视觉-惯性-声学传感器融合用于水下航行器的精确自主定位

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-11-20 DOI:10.1109/TCYB.2024.3488077
Yupei Huang;Peng Li;Shaoxuan Ma;Shuaizheng Yan;Min Tan;Junzhi Yu;Zhengxing Wu
{"title":"视觉-惯性-声学传感器融合用于水下航行器的精确自主定位","authors":"Yupei Huang;Peng Li;Shaoxuan Ma;Shuaizheng Yan;Min Tan;Junzhi Yu;Zhengxing Wu","doi":"10.1109/TCYB.2024.3488077","DOIUrl":null,"url":null,"abstract":"In this article, we propose a tightly coupled visual-inertial-acoustic sensor fusion method to improve the autonomous localization accuracy of underwater vehicles. To address the performance degradation encountered by existing visual or visual-inertial simultaneous localization and mapping systems when applied in underwater environments, we integrate the Doppler velocity log (DVL), an acoustic velocity sensor, to provide additional motion information. To fully leverage the complementary characteristics among visual, inertial, and acoustic sensors, we perform multimodal information fusion in both frontend tracking and backend mapping processes. Specifically, in the frontend tracking process, we first predict the vehicle’s pose using the angular velocity measurements from the gyroscope and linear velocity measurements from the DVL. Thereafter, measurements performed by the three sensors between adjacent camera frames are utilized to construct visual reprojection error, inertial error, and DVL displacement error, which are jointly minimized to obtain a more accurate pose estimation at the current frame. In the backend mapping process, we utilize gyroscope and DVL measurements to construct relative pose change residuals between keyframes, which are minimized together with visual and inertial residuals to further refine the poses of the keyframes within the local map. Experimental results on both simulated and real-world underwater datasets demonstrate that the proposed fusion method improves the localization accuracy by more than 30% compared to the current state-of-the-art ORB-SLAM3 stereo-inertial method, validating the potential of the proposed method in practical underwater applications.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"880-896"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual-Inertial-Acoustic Sensor Fusion for Accurate Autonomous Localization of Underwater Vehicles\",\"authors\":\"Yupei Huang;Peng Li;Shaoxuan Ma;Shuaizheng Yan;Min Tan;Junzhi Yu;Zhengxing Wu\",\"doi\":\"10.1109/TCYB.2024.3488077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a tightly coupled visual-inertial-acoustic sensor fusion method to improve the autonomous localization accuracy of underwater vehicles. To address the performance degradation encountered by existing visual or visual-inertial simultaneous localization and mapping systems when applied in underwater environments, we integrate the Doppler velocity log (DVL), an acoustic velocity sensor, to provide additional motion information. To fully leverage the complementary characteristics among visual, inertial, and acoustic sensors, we perform multimodal information fusion in both frontend tracking and backend mapping processes. Specifically, in the frontend tracking process, we first predict the vehicle’s pose using the angular velocity measurements from the gyroscope and linear velocity measurements from the DVL. Thereafter, measurements performed by the three sensors between adjacent camera frames are utilized to construct visual reprojection error, inertial error, and DVL displacement error, which are jointly minimized to obtain a more accurate pose estimation at the current frame. In the backend mapping process, we utilize gyroscope and DVL measurements to construct relative pose change residuals between keyframes, which are minimized together with visual and inertial residuals to further refine the poses of the keyframes within the local map. Experimental results on both simulated and real-world underwater datasets demonstrate that the proposed fusion method improves the localization accuracy by more than 30% compared to the current state-of-the-art ORB-SLAM3 stereo-inertial method, validating the potential of the proposed method in practical underwater applications.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 2\",\"pages\":\"880-896\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10758694/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10758694/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual-Inertial-Acoustic Sensor Fusion for Accurate Autonomous Localization of Underwater Vehicles
In this article, we propose a tightly coupled visual-inertial-acoustic sensor fusion method to improve the autonomous localization accuracy of underwater vehicles. To address the performance degradation encountered by existing visual or visual-inertial simultaneous localization and mapping systems when applied in underwater environments, we integrate the Doppler velocity log (DVL), an acoustic velocity sensor, to provide additional motion information. To fully leverage the complementary characteristics among visual, inertial, and acoustic sensors, we perform multimodal information fusion in both frontend tracking and backend mapping processes. Specifically, in the frontend tracking process, we first predict the vehicle’s pose using the angular velocity measurements from the gyroscope and linear velocity measurements from the DVL. Thereafter, measurements performed by the three sensors between adjacent camera frames are utilized to construct visual reprojection error, inertial error, and DVL displacement error, which are jointly minimized to obtain a more accurate pose estimation at the current frame. In the backend mapping process, we utilize gyroscope and DVL measurements to construct relative pose change residuals between keyframes, which are minimized together with visual and inertial residuals to further refine the poses of the keyframes within the local map. Experimental results on both simulated and real-world underwater datasets demonstrate that the proposed fusion method improves the localization accuracy by more than 30% compared to the current state-of-the-art ORB-SLAM3 stereo-inertial method, validating the potential of the proposed method in practical underwater applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
EViT: An Eagle Vision Transformer With Bi-Fovea Self-Attention Data Stream Clustering: Introducing Recursively Extendable Aggregation Functions for Incremental Cluster Fusion Processes Learning to Imbalanced Open Set Generalize: A Meta-Learning Framework for Enhanced Mechanical Diagnosis Event-/Self-Triggered Adaptive Optimal Consensus Control for Nonlinear Multiagent System With Unknown Dynamics and Disturbances Two-Stage Cooperation Multiobjective Evolutionary Algorithm Guided by Constraint-Sensitive Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1