{"title":"视觉-惯性-声学传感器融合用于水下航行器的精确自主定位","authors":"Yupei Huang;Peng Li;Shaoxuan Ma;Shuaizheng Yan;Min Tan;Junzhi Yu;Zhengxing Wu","doi":"10.1109/TCYB.2024.3488077","DOIUrl":null,"url":null,"abstract":"In this article, we propose a tightly coupled visual-inertial-acoustic sensor fusion method to improve the autonomous localization accuracy of underwater vehicles. To address the performance degradation encountered by existing visual or visual-inertial simultaneous localization and mapping systems when applied in underwater environments, we integrate the Doppler velocity log (DVL), an acoustic velocity sensor, to provide additional motion information. To fully leverage the complementary characteristics among visual, inertial, and acoustic sensors, we perform multimodal information fusion in both frontend tracking and backend mapping processes. Specifically, in the frontend tracking process, we first predict the vehicle’s pose using the angular velocity measurements from the gyroscope and linear velocity measurements from the DVL. Thereafter, measurements performed by the three sensors between adjacent camera frames are utilized to construct visual reprojection error, inertial error, and DVL displacement error, which are jointly minimized to obtain a more accurate pose estimation at the current frame. In the backend mapping process, we utilize gyroscope and DVL measurements to construct relative pose change residuals between keyframes, which are minimized together with visual and inertial residuals to further refine the poses of the keyframes within the local map. Experimental results on both simulated and real-world underwater datasets demonstrate that the proposed fusion method improves the localization accuracy by more than 30% compared to the current state-of-the-art ORB-SLAM3 stereo-inertial method, validating the potential of the proposed method in practical underwater applications.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"880-896"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual-Inertial-Acoustic Sensor Fusion for Accurate Autonomous Localization of Underwater Vehicles\",\"authors\":\"Yupei Huang;Peng Li;Shaoxuan Ma;Shuaizheng Yan;Min Tan;Junzhi Yu;Zhengxing Wu\",\"doi\":\"10.1109/TCYB.2024.3488077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose a tightly coupled visual-inertial-acoustic sensor fusion method to improve the autonomous localization accuracy of underwater vehicles. To address the performance degradation encountered by existing visual or visual-inertial simultaneous localization and mapping systems when applied in underwater environments, we integrate the Doppler velocity log (DVL), an acoustic velocity sensor, to provide additional motion information. To fully leverage the complementary characteristics among visual, inertial, and acoustic sensors, we perform multimodal information fusion in both frontend tracking and backend mapping processes. Specifically, in the frontend tracking process, we first predict the vehicle’s pose using the angular velocity measurements from the gyroscope and linear velocity measurements from the DVL. Thereafter, measurements performed by the three sensors between adjacent camera frames are utilized to construct visual reprojection error, inertial error, and DVL displacement error, which are jointly minimized to obtain a more accurate pose estimation at the current frame. In the backend mapping process, we utilize gyroscope and DVL measurements to construct relative pose change residuals between keyframes, which are minimized together with visual and inertial residuals to further refine the poses of the keyframes within the local map. Experimental results on both simulated and real-world underwater datasets demonstrate that the proposed fusion method improves the localization accuracy by more than 30% compared to the current state-of-the-art ORB-SLAM3 stereo-inertial method, validating the potential of the proposed method in practical underwater applications.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 2\",\"pages\":\"880-896\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10758694/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10758694/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Visual-Inertial-Acoustic Sensor Fusion for Accurate Autonomous Localization of Underwater Vehicles
In this article, we propose a tightly coupled visual-inertial-acoustic sensor fusion method to improve the autonomous localization accuracy of underwater vehicles. To address the performance degradation encountered by existing visual or visual-inertial simultaneous localization and mapping systems when applied in underwater environments, we integrate the Doppler velocity log (DVL), an acoustic velocity sensor, to provide additional motion information. To fully leverage the complementary characteristics among visual, inertial, and acoustic sensors, we perform multimodal information fusion in both frontend tracking and backend mapping processes. Specifically, in the frontend tracking process, we first predict the vehicle’s pose using the angular velocity measurements from the gyroscope and linear velocity measurements from the DVL. Thereafter, measurements performed by the three sensors between adjacent camera frames are utilized to construct visual reprojection error, inertial error, and DVL displacement error, which are jointly minimized to obtain a more accurate pose estimation at the current frame. In the backend mapping process, we utilize gyroscope and DVL measurements to construct relative pose change residuals between keyframes, which are minimized together with visual and inertial residuals to further refine the poses of the keyframes within the local map. Experimental results on both simulated and real-world underwater datasets demonstrate that the proposed fusion method improves the localization accuracy by more than 30% compared to the current state-of-the-art ORB-SLAM3 stereo-inertial method, validating the potential of the proposed method in practical underwater applications.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.