{"title":"氨对前驱体的微观结构和富镍层状氧化物的电化学性能有何影响?","authors":"Jilu Zhang, Xinyue Zhai, Tian Zhao, Xiaoxia Yang, Qin Wang, Zhongjun Chen, Meng-Cheng Chen, Jian-Jie Ma, Ying-Rui Lu, Sung-Fu Hung, Weibo Hua","doi":"10.1039/d4ta06142j","DOIUrl":null,"url":null,"abstract":"The role of ammonia concentration in determining the particle shape and size of Ni-rich cathode materials during co-precipitation, though recognized as important, remains insufficiently understood in terms of its underlying mechanisms. In this study, we explore the effects of five distinct ammonia concentrations (0.2 mol/L, 0.3 mol/L, 0.4 mol/L, gradually increasing from 0 to 0.4 mol/L, and decreasing from 0.4 to 0.12 mol/L) on the microstructure of the Ni0.95Al0.05(OH)2.05 precursor throughout the precipitation process. The results reveal that ammonia concentration significantly influences both nucleation and crystal growth rates, with higher ammonia levels reducing nucleation rates and leading to more uniform agglomerates. Additionally, ammonia concentration affects the thickness-to-length ratio of the precursor's primary particles, which in turn influences the morphology of the LiNi0.95Al0.05O2 cathode materials during lithiation. Importantly, the study demonstrates that the electrochemical properties of LiNi0.95Al0.05O2 are more closely related to the shape of the primary particles than to the secondary particles, highlighting the critical importance of microstructural control in the design of next-generation Li-ion batteries. This study demonstrates the critical impact of ammonia concentration on particle characteristics. The results offer valuable insights for improving battery performance.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"1 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What impact does ammonia have on the microstructure of the precursor and the electrochemical performance of Ni-rich layered oxides?\",\"authors\":\"Jilu Zhang, Xinyue Zhai, Tian Zhao, Xiaoxia Yang, Qin Wang, Zhongjun Chen, Meng-Cheng Chen, Jian-Jie Ma, Ying-Rui Lu, Sung-Fu Hung, Weibo Hua\",\"doi\":\"10.1039/d4ta06142j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of ammonia concentration in determining the particle shape and size of Ni-rich cathode materials during co-precipitation, though recognized as important, remains insufficiently understood in terms of its underlying mechanisms. In this study, we explore the effects of five distinct ammonia concentrations (0.2 mol/L, 0.3 mol/L, 0.4 mol/L, gradually increasing from 0 to 0.4 mol/L, and decreasing from 0.4 to 0.12 mol/L) on the microstructure of the Ni0.95Al0.05(OH)2.05 precursor throughout the precipitation process. The results reveal that ammonia concentration significantly influences both nucleation and crystal growth rates, with higher ammonia levels reducing nucleation rates and leading to more uniform agglomerates. Additionally, ammonia concentration affects the thickness-to-length ratio of the precursor's primary particles, which in turn influences the morphology of the LiNi0.95Al0.05O2 cathode materials during lithiation. Importantly, the study demonstrates that the electrochemical properties of LiNi0.95Al0.05O2 are more closely related to the shape of the primary particles than to the secondary particles, highlighting the critical importance of microstructural control in the design of next-generation Li-ion batteries. This study demonstrates the critical impact of ammonia concentration on particle characteristics. The results offer valuable insights for improving battery performance.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta06142j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06142j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
What impact does ammonia have on the microstructure of the precursor and the electrochemical performance of Ni-rich layered oxides?
The role of ammonia concentration in determining the particle shape and size of Ni-rich cathode materials during co-precipitation, though recognized as important, remains insufficiently understood in terms of its underlying mechanisms. In this study, we explore the effects of five distinct ammonia concentrations (0.2 mol/L, 0.3 mol/L, 0.4 mol/L, gradually increasing from 0 to 0.4 mol/L, and decreasing from 0.4 to 0.12 mol/L) on the microstructure of the Ni0.95Al0.05(OH)2.05 precursor throughout the precipitation process. The results reveal that ammonia concentration significantly influences both nucleation and crystal growth rates, with higher ammonia levels reducing nucleation rates and leading to more uniform agglomerates. Additionally, ammonia concentration affects the thickness-to-length ratio of the precursor's primary particles, which in turn influences the morphology of the LiNi0.95Al0.05O2 cathode materials during lithiation. Importantly, the study demonstrates that the electrochemical properties of LiNi0.95Al0.05O2 are more closely related to the shape of the primary particles than to the secondary particles, highlighting the critical importance of microstructural control in the design of next-generation Li-ion batteries. This study demonstrates the critical impact of ammonia concentration on particle characteristics. The results offer valuable insights for improving battery performance.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.