根瘤菌对内生菌的营养调节作用

Rasit Asiloglu, Seda Ozer Bodur, Solomon Oloruntoba Samuel, Murat Aycan, Jun Murase, Naoki Harada
{"title":"根瘤菌对内生菌的营养调节作用","authors":"Rasit Asiloglu, Seda Ozer Bodur, Solomon Oloruntoba Samuel, Murat Aycan, Jun Murase, Naoki Harada","doi":"10.1093/ismejo/wrae235","DOIUrl":null,"url":null,"abstract":"The plant-microbe interactions, which is crucial for plant health and productivity, mainly occur in rhizosphere: a narrow zone of soil surrounding roots of living plants. The rhizosphere hosts one of the most intense habitats for microbial prey–predator interactions, especially between predatory protists and bacteria. Here, based on two key facts, microbial predators modulate rhizobacterial community composition, and the rhizobacterial community is the primary source of root microbiome, endophytes; we hypothesized that predation upon rhizobacteria would modulate the community composition of endophytic bacteria. The effects of three taxonomically distinct axenic protist species (Acanthamoeba castellanii, Vermamoeba vermiformis, and Heteromita globosa) were tested in this study. To examine the robustness of the hypotheses, the experiments were conducted in three soil types characterized by distinct bacterial communities and physicochemical properties. The bacterial community compositions were analyzed with high throughput sequencing. Bacterial gene abundances were estimated with a real-time-PCR method. The results showed that protists modulated endophytic communities, which originated in the rhizosphere soil. The modulation of endophytic communities by protists showed chaotic patterns rather than a deterministic effect under different soil types. The observed chaotic dynamics were further confirmed with an additional experiment, in which chaos was triggered by changes in the dilution rates of soil nutrients. Furthermore, the presence of predators enhanced the root colonization of endophytes. Our findings identify a key mechanism for the modulation of root endophytes and enhance understanding of underground plant-microbe interactions, which can lead to open new avenues for modulating the root microbiome to enhance crop production.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trophic modulation of endophytes by rhizosphere protists\",\"authors\":\"Rasit Asiloglu, Seda Ozer Bodur, Solomon Oloruntoba Samuel, Murat Aycan, Jun Murase, Naoki Harada\",\"doi\":\"10.1093/ismejo/wrae235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plant-microbe interactions, which is crucial for plant health and productivity, mainly occur in rhizosphere: a narrow zone of soil surrounding roots of living plants. The rhizosphere hosts one of the most intense habitats for microbial prey–predator interactions, especially between predatory protists and bacteria. Here, based on two key facts, microbial predators modulate rhizobacterial community composition, and the rhizobacterial community is the primary source of root microbiome, endophytes; we hypothesized that predation upon rhizobacteria would modulate the community composition of endophytic bacteria. The effects of three taxonomically distinct axenic protist species (Acanthamoeba castellanii, Vermamoeba vermiformis, and Heteromita globosa) were tested in this study. To examine the robustness of the hypotheses, the experiments were conducted in three soil types characterized by distinct bacterial communities and physicochemical properties. The bacterial community compositions were analyzed with high throughput sequencing. Bacterial gene abundances were estimated with a real-time-PCR method. The results showed that protists modulated endophytic communities, which originated in the rhizosphere soil. The modulation of endophytic communities by protists showed chaotic patterns rather than a deterministic effect under different soil types. The observed chaotic dynamics were further confirmed with an additional experiment, in which chaos was triggered by changes in the dilution rates of soil nutrients. Furthermore, the presence of predators enhanced the root colonization of endophytes. Our findings identify a key mechanism for the modulation of root endophytes and enhance understanding of underground plant-microbe interactions, which can lead to open new avenues for modulating the root microbiome to enhance crop production.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物与微生物之间的相互作用对植物的健康和生产力至关重要,这种作用主要发生在根瘤菌圈中:根瘤菌圈是活植物根部周围的一个狭窄的土壤区域。根瘤菌圈是微生物捕食者与被捕食者相互作用最激烈的栖息地之一,尤其是捕食性原生动物与细菌之间的相互作用。在这里,基于微生物捕食者调节根瘤菌群落组成和根瘤菌群落是根部微生物组、内生菌的主要来源这两个关键事实,我们假设对根瘤菌的捕食会调节内生菌的群落组成。本研究测试了三种在分类学上截然不同的腋生原生动物(Acanthamoeba castellanii、Vermamoeba vermiformis 和 Heteromita globosa)的影响。为了检验假设的稳健性,实验在三种具有不同细菌群落和理化特性的土壤中进行。通过高通量测序分析了细菌群落组成。细菌基因丰度采用实时 PCR 方法进行估算。结果表明,原生生物调节了根圈土壤中的内生菌群落。在不同的土壤类型下,原生菌对内生菌群落的调节呈现出混沌模式,而非确定性效应。另外一个实验进一步证实了所观察到的混乱动态,在该实验中,土壤养分稀释率的变化引发了混乱。此外,捕食者的存在增强了内生菌的根部定殖。我们的研究发现了调节根部内生菌的关键机制,并加深了对地下植物与微生物相互作用的理解,从而为调节根部微生物组提高作物产量开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trophic modulation of endophytes by rhizosphere protists
The plant-microbe interactions, which is crucial for plant health and productivity, mainly occur in rhizosphere: a narrow zone of soil surrounding roots of living plants. The rhizosphere hosts one of the most intense habitats for microbial prey–predator interactions, especially between predatory protists and bacteria. Here, based on two key facts, microbial predators modulate rhizobacterial community composition, and the rhizobacterial community is the primary source of root microbiome, endophytes; we hypothesized that predation upon rhizobacteria would modulate the community composition of endophytic bacteria. The effects of three taxonomically distinct axenic protist species (Acanthamoeba castellanii, Vermamoeba vermiformis, and Heteromita globosa) were tested in this study. To examine the robustness of the hypotheses, the experiments were conducted in three soil types characterized by distinct bacterial communities and physicochemical properties. The bacterial community compositions were analyzed with high throughput sequencing. Bacterial gene abundances were estimated with a real-time-PCR method. The results showed that protists modulated endophytic communities, which originated in the rhizosphere soil. The modulation of endophytic communities by protists showed chaotic patterns rather than a deterministic effect under different soil types. The observed chaotic dynamics were further confirmed with an additional experiment, in which chaos was triggered by changes in the dilution rates of soil nutrients. Furthermore, the presence of predators enhanced the root colonization of endophytes. Our findings identify a key mechanism for the modulation of root endophytes and enhance understanding of underground plant-microbe interactions, which can lead to open new avenues for modulating the root microbiome to enhance crop production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic and species rearrangements in microbial consortia impact biodegradation potential Led astray by 16S rRNA: phylogenomics reaffirms the monophyly of Methylobacterium and lack of support for Methylorubrum as a genus. Tolerance to land-use changes through natural modulations of the plant microbiome Prophage-encoded chitinase gene supports growth of its bacterial host isolated from deep-sea sediments Dispersal promotes stability and persistence of exploited yeast mutualisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1