机器学习辅助设计用于高效稳定包光体太阳能电池的埋入式界面工程材料

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-11-20 DOI:10.1021/acsenergylett.4c02610
Qi Zhang, Han Wang, Qiangqiang Zhao, Asmat Ullah, Xiuzun Zhong, Yulin Wei, Chenyang Zhang, Ruida Xu, Stefaan De Wolf, Kai Wang
{"title":"机器学习辅助设计用于高效稳定包光体太阳能电池的埋入式界面工程材料","authors":"Qi Zhang, Han Wang, Qiangqiang Zhao, Asmat Ullah, Xiuzun Zhong, Yulin Wei, Chenyang Zhang, Ruida Xu, Stefaan De Wolf, Kai Wang","doi":"10.1021/acsenergylett.4c02610","DOIUrl":null,"url":null,"abstract":"Buried-interface engineering is crucial to the performance of perovskite solar cells. Self-assembled monolayers and buffer layers at the buried interface can optimize charge transfer and reduce recombination losses. However, the complex mechanisms and the difficulty in selecting suitable functional groups pose great challenges. Machine learning (ML) offers a powerful tool for screening and identifying effective structures for interface modification. Our ML-driven approach led to the preparation of two promising organic molecules, PAPzO and PAPz, which exhibit synergistic interactions with SnO<sub>2</sub> and perovskites. These molecules decrease charge trap densities, elongate carrier lifetimes, and retard perovskite crystallization. PAPzO, with a stronger binding energy and better aligned energy levels, enables a power conversion efficiency (PCE) of 26.04% and long-term stability, maintaining 91.24% of its original PCE after 1,200 h of continuous maximum power point tracking. This ML-integrated approach marks a significant advancement in the development of efficient and stable perovskite photovoltaics.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"46 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-Learning-Assisted Design of Buried-Interface Engineering Materials for High-Efficiency and Stable Perovskite Solar Cells\",\"authors\":\"Qi Zhang, Han Wang, Qiangqiang Zhao, Asmat Ullah, Xiuzun Zhong, Yulin Wei, Chenyang Zhang, Ruida Xu, Stefaan De Wolf, Kai Wang\",\"doi\":\"10.1021/acsenergylett.4c02610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Buried-interface engineering is crucial to the performance of perovskite solar cells. Self-assembled monolayers and buffer layers at the buried interface can optimize charge transfer and reduce recombination losses. However, the complex mechanisms and the difficulty in selecting suitable functional groups pose great challenges. Machine learning (ML) offers a powerful tool for screening and identifying effective structures for interface modification. Our ML-driven approach led to the preparation of two promising organic molecules, PAPzO and PAPz, which exhibit synergistic interactions with SnO<sub>2</sub> and perovskites. These molecules decrease charge trap densities, elongate carrier lifetimes, and retard perovskite crystallization. PAPzO, with a stronger binding energy and better aligned energy levels, enables a power conversion efficiency (PCE) of 26.04% and long-term stability, maintaining 91.24% of its original PCE after 1,200 h of continuous maximum power point tracking. This ML-integrated approach marks a significant advancement in the development of efficient and stable perovskite photovoltaics.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c02610\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02610","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

埋藏界面工程对于包晶太阳能电池的性能至关重要。埋藏界面的自组装单层和缓冲层可以优化电荷转移并减少重组损耗。然而,复杂的机理和难以选择合适的官能团带来了巨大的挑战。机器学习(ML)为筛选和确定有效的界面修饰结构提供了强有力的工具。我们以 ML 为驱动的方法制备出了两种很有前景的有机分子 PAPzO 和 PAPz,它们与二氧化锡和过氧化物具有协同作用。这些分子能降低电荷阱密度、延长载流子寿命并延缓过氧化物晶化。PAPzO 具有更强的结合能和更好的对齐能级,可实现 26.04% 的功率转换效率(PCE)和长期稳定性,在连续跟踪最大功率点 1200 小时后,仍能保持 91.24% 的原始 PCE。这种集成了 ML 的方法标志着在开发高效稳定的过氧化物光伏技术方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine-Learning-Assisted Design of Buried-Interface Engineering Materials for High-Efficiency and Stable Perovskite Solar Cells
Buried-interface engineering is crucial to the performance of perovskite solar cells. Self-assembled monolayers and buffer layers at the buried interface can optimize charge transfer and reduce recombination losses. However, the complex mechanisms and the difficulty in selecting suitable functional groups pose great challenges. Machine learning (ML) offers a powerful tool for screening and identifying effective structures for interface modification. Our ML-driven approach led to the preparation of two promising organic molecules, PAPzO and PAPz, which exhibit synergistic interactions with SnO2 and perovskites. These molecules decrease charge trap densities, elongate carrier lifetimes, and retard perovskite crystallization. PAPzO, with a stronger binding energy and better aligned energy levels, enables a power conversion efficiency (PCE) of 26.04% and long-term stability, maintaining 91.24% of its original PCE after 1,200 h of continuous maximum power point tracking. This ML-integrated approach marks a significant advancement in the development of efficient and stable perovskite photovoltaics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Chemically Designed Crystal Growth Termination for High-Luminance and Stable Polycrystalline Perovskite LEDs Quantitative Analysis of the Coupled Mechanisms of Lithium Plating, SEI Growth, and Electrolyte Decomposition in Fast Charging Battery Enhanced Power Conversion Efficiency in Tin Halide Perovskite Solar Cells with Zinc Iodide Interlayers Ionic Lockdown: Sealing Migration Channels across Device Interfaces in Mixed Halide Perovskite Solar Cells LiI-Coated Li-Sn Alloy Composite Anode for Lithium Metal Batteries with Solid Polymer Electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1