{"title":"铑催化的 α-取代烯酰胺的不对称还原加氢甲酰化反应","authors":"Yuxin Zhu, Yuchen Zhang, Dongyang He, He Yang, Xiao-Song Xue, Wenjun Tang","doi":"10.1021/jacs.4c13770","DOIUrl":null,"url":null,"abstract":"Chiral γ-amino alcohols are prevalent structural motifs in natural products and bioactive compounds. Nevertheless, efficient and atom-economical synthetic methods toward enantiomerically enriched γ-amino alcohols are still lacking. In this study, a highly enantioselective rhodium-catalyzed reductive hydroformylation of readily available α-substituted enamides is developed, providing a series of pharmaceutically valuable chiral 1,3-amino alcohols in good yields and excellent enantioselectivities in a single step. The development of the 4,4′-bisarylamino-substituted BIBOP ligand is crucial for the success of this transformation. DFT calculations and experimental data have revealed the importance of hydrogen bonding between the N–H group in the structure of TFPNH-BIBOP and the enamide carbonyl group in promoting both high enantioselectivity and reactivity. This method has enabled the concise synthesis of several chiral pharmaceutical intermediates including a single-step synthesis of the key chiral intermediate of maraviroc.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"11 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rhodium-Catalyzed Asymmetric Reductive Hydroformylation of α-Substituted Enamides\",\"authors\":\"Yuxin Zhu, Yuchen Zhang, Dongyang He, He Yang, Xiao-Song Xue, Wenjun Tang\",\"doi\":\"10.1021/jacs.4c13770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chiral γ-amino alcohols are prevalent structural motifs in natural products and bioactive compounds. Nevertheless, efficient and atom-economical synthetic methods toward enantiomerically enriched γ-amino alcohols are still lacking. In this study, a highly enantioselective rhodium-catalyzed reductive hydroformylation of readily available α-substituted enamides is developed, providing a series of pharmaceutically valuable chiral 1,3-amino alcohols in good yields and excellent enantioselectivities in a single step. The development of the 4,4′-bisarylamino-substituted BIBOP ligand is crucial for the success of this transformation. DFT calculations and experimental data have revealed the importance of hydrogen bonding between the N–H group in the structure of TFPNH-BIBOP and the enamide carbonyl group in promoting both high enantioselectivity and reactivity. This method has enabled the concise synthesis of several chiral pharmaceutical intermediates including a single-step synthesis of the key chiral intermediate of maraviroc.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c13770\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13770","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Rhodium-Catalyzed Asymmetric Reductive Hydroformylation of α-Substituted Enamides
Chiral γ-amino alcohols are prevalent structural motifs in natural products and bioactive compounds. Nevertheless, efficient and atom-economical synthetic methods toward enantiomerically enriched γ-amino alcohols are still lacking. In this study, a highly enantioselective rhodium-catalyzed reductive hydroformylation of readily available α-substituted enamides is developed, providing a series of pharmaceutically valuable chiral 1,3-amino alcohols in good yields and excellent enantioselectivities in a single step. The development of the 4,4′-bisarylamino-substituted BIBOP ligand is crucial for the success of this transformation. DFT calculations and experimental data have revealed the importance of hydrogen bonding between the N–H group in the structure of TFPNH-BIBOP and the enamide carbonyl group in promoting both high enantioselectivity and reactivity. This method has enabled the concise synthesis of several chiral pharmaceutical intermediates including a single-step synthesis of the key chiral intermediate of maraviroc.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.