Songyuan Yao, Tra D. Nguyen, Yunpeng Lan, Wen Yang, Dan Chen, Yihan Shao, Zhibo Yang
{"title":"元表型:基于单细胞质谱的细胞表型预测的可转移元学习模型(使用有限数量的细胞","authors":"Songyuan Yao, Tra D. Nguyen, Yunpeng Lan, Wen Yang, Dan Chen, Yihan Shao, Zhibo Yang","doi":"10.1021/acs.analchem.4c02038","DOIUrl":null,"url":null,"abstract":"Single-cell mass spectrometry (SCMS) is an emerging tool for studying cell heterogeneity according to variation of molecular species in single cells. Although it has become increasingly common to employ machine learning models in SCMS data analysis, such as the classification of cell phenotypes, the existing machine learning models often suffer from low adaptability and transferability. In addition, SCMS studies of rare cells can be restricted by limited number of cell samples. To overcome these limitations, we performed SCMS analyses of melanoma cancer cell lines with two phenotypes (i.e., primary and metastatic cells). We then developed a meta-learning-based model, MetaPhenotype, that can be trained using a small amount of SCMS data to accurately classify cells into primary or metastatic phenotypes. Our results show that compared with standard transfer learning models, MetaPhenotype can rapidly predict and achieve a high accuracy of over 90% with fewer new training samples. Overall, our work opens the possibility of accurate cell phenotype classification based on fewer SCMS samples, thus lowering the demand for sample acquisition.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"11 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MetaPhenotype: A Transferable Meta-Learning Model for Single-Cell Mass Spectrometry-Based Cell Phenotype Prediction Using Limited Number of Cells\",\"authors\":\"Songyuan Yao, Tra D. Nguyen, Yunpeng Lan, Wen Yang, Dan Chen, Yihan Shao, Zhibo Yang\",\"doi\":\"10.1021/acs.analchem.4c02038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell mass spectrometry (SCMS) is an emerging tool for studying cell heterogeneity according to variation of molecular species in single cells. Although it has become increasingly common to employ machine learning models in SCMS data analysis, such as the classification of cell phenotypes, the existing machine learning models often suffer from low adaptability and transferability. In addition, SCMS studies of rare cells can be restricted by limited number of cell samples. To overcome these limitations, we performed SCMS analyses of melanoma cancer cell lines with two phenotypes (i.e., primary and metastatic cells). We then developed a meta-learning-based model, MetaPhenotype, that can be trained using a small amount of SCMS data to accurately classify cells into primary or metastatic phenotypes. Our results show that compared with standard transfer learning models, MetaPhenotype can rapidly predict and achieve a high accuracy of over 90% with fewer new training samples. Overall, our work opens the possibility of accurate cell phenotype classification based on fewer SCMS samples, thus lowering the demand for sample acquisition.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c02038\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c02038","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
MetaPhenotype: A Transferable Meta-Learning Model for Single-Cell Mass Spectrometry-Based Cell Phenotype Prediction Using Limited Number of Cells
Single-cell mass spectrometry (SCMS) is an emerging tool for studying cell heterogeneity according to variation of molecular species in single cells. Although it has become increasingly common to employ machine learning models in SCMS data analysis, such as the classification of cell phenotypes, the existing machine learning models often suffer from low adaptability and transferability. In addition, SCMS studies of rare cells can be restricted by limited number of cell samples. To overcome these limitations, we performed SCMS analyses of melanoma cancer cell lines with two phenotypes (i.e., primary and metastatic cells). We then developed a meta-learning-based model, MetaPhenotype, that can be trained using a small amount of SCMS data to accurately classify cells into primary or metastatic phenotypes. Our results show that compared with standard transfer learning models, MetaPhenotype can rapidly predict and achieve a high accuracy of over 90% with fewer new training samples. Overall, our work opens the possibility of accurate cell phenotype classification based on fewer SCMS samples, thus lowering the demand for sample acquisition.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.