爆发期变化外观活动星系核 NGC 4151 的速度分辨混响绘图。II.四季观测结果

Hai-Cheng Feng, Sha-Sha Li, J. M. Bai, H. T. Liu, Kai-Xing Lu, Yu-Xuan Pang, Mouyuan Sun, Jian-Guo Wang, Yang-Wei Zhang and Shuying Zhou
{"title":"爆发期变化外观活动星系核 NGC 4151 的速度分辨混响绘图。II.四季观测结果","authors":"Hai-Cheng Feng, Sha-Sha Li, J. M. Bai, H. T. Liu, Kai-Xing Lu, Yu-Xuan Pang, Mouyuan Sun, Jian-Guo Wang, Yang-Wei Zhang and Shuying Zhou","doi":"10.3847/1538-4357/ad8568","DOIUrl":null,"url":null,"abstract":"We present the results of a four-year velocity-resolved reverberation mapping (RM) campaign of the changing-look active galactic nucleus (CL-AGN) NGC 4151 during its outburst phase. By measuring the time lags of the Hα, Hβ, Hγ, He i, and He ii emission lines, we confirm a stratified broad-line region (BLR) structure that aligns with predictions from photoionization models. Intriguingly, we observed an “anti-breathing” phenomenon, where the lags of broad emission lines decreased with increasing luminosity, contrary to the typical expectation. This anomaly may be attributed to the influence of the ultraviolet-optical lag or nonvirialized motions in the BLR gas. Velocity-resolved RM and ionization mapping analyses revealed rapid and significant changes in the BLR geometry and kinematics on timescales of less than a year, which cannot be interpreted by any single mechanism, such as an inhomogeneous BLR, variations in radiation pressure, or changes in the illuminated ionizing field. Additionally, the Hβ lags of NGC 4151 and other CL-AGNs agree with the radius–luminosity relationship established for AGNs with low accretion rates, implying that the CL phenomenon is more likely driven by intrinsic changes in the accretion rate rather than obscuration. These findings provide new insights into the complex internal processes of CL-AGNs and highlight the importance of long-term, multiline RM for understanding BLR structures, geometry, and kinematics.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Velocity-resolved Reverberation Mapping of Changing-look Active Galactic Nucleus NGC 4151 during Outburst Stage. II. Results of Four Seasons of Observation\",\"authors\":\"Hai-Cheng Feng, Sha-Sha Li, J. M. Bai, H. T. Liu, Kai-Xing Lu, Yu-Xuan Pang, Mouyuan Sun, Jian-Guo Wang, Yang-Wei Zhang and Shuying Zhou\",\"doi\":\"10.3847/1538-4357/ad8568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the results of a four-year velocity-resolved reverberation mapping (RM) campaign of the changing-look active galactic nucleus (CL-AGN) NGC 4151 during its outburst phase. By measuring the time lags of the Hα, Hβ, Hγ, He i, and He ii emission lines, we confirm a stratified broad-line region (BLR) structure that aligns with predictions from photoionization models. Intriguingly, we observed an “anti-breathing” phenomenon, where the lags of broad emission lines decreased with increasing luminosity, contrary to the typical expectation. This anomaly may be attributed to the influence of the ultraviolet-optical lag or nonvirialized motions in the BLR gas. Velocity-resolved RM and ionization mapping analyses revealed rapid and significant changes in the BLR geometry and kinematics on timescales of less than a year, which cannot be interpreted by any single mechanism, such as an inhomogeneous BLR, variations in radiation pressure, or changes in the illuminated ionizing field. Additionally, the Hβ lags of NGC 4151 and other CL-AGNs agree with the radius–luminosity relationship established for AGNs with low accretion rates, implying that the CL phenomenon is more likely driven by intrinsic changes in the accretion rate rather than obscuration. These findings provide new insights into the complex internal processes of CL-AGNs and highlight the importance of long-term, multiline RM for understanding BLR structures, geometry, and kinematics.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ad8568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad8568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了对处于爆发期的变化看活动星系核(CL-AGN)NGC 4151 进行的为期四年的速度分辨混响绘图(RM)活动的结果。通过测量 Hα、Hβ、Hγ、He i 和 He ii 发射线的时滞,我们证实了分层宽线区(BLR)结构与光离子化模型的预测相一致。有趣的是,我们观测到了一种 "反呼吸 "现象,即宽发射线的滞后随着光度的增加而减小,这与通常的预期相反。这种反常现象可能是由于紫外-光学滞后或 BLR 气体中的非椭球运动的影响。速度分辨 RM 和电离映射分析表明,BLR 的几何形状和运动学在不到一年的时间尺度内发生了快速而显著的变化,这不能用任何单一的机制来解释,如不均匀的 BLR、辐射压力的变化或照射电离场的变化。此外,NGC 4151和其他CL-AGN的Hβ滞后与低吸积率AGN的半径-光度关系一致,这意味着CL现象更可能是由吸积率的内在变化而不是遮挡所驱动的。这些发现为了解CL-AGNs复杂的内部过程提供了新的视角,并突出了长期多线RM对了解BLR结构、几何和运动学的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Velocity-resolved Reverberation Mapping of Changing-look Active Galactic Nucleus NGC 4151 during Outburst Stage. II. Results of Four Seasons of Observation
We present the results of a four-year velocity-resolved reverberation mapping (RM) campaign of the changing-look active galactic nucleus (CL-AGN) NGC 4151 during its outburst phase. By measuring the time lags of the Hα, Hβ, Hγ, He i, and He ii emission lines, we confirm a stratified broad-line region (BLR) structure that aligns with predictions from photoionization models. Intriguingly, we observed an “anti-breathing” phenomenon, where the lags of broad emission lines decreased with increasing luminosity, contrary to the typical expectation. This anomaly may be attributed to the influence of the ultraviolet-optical lag or nonvirialized motions in the BLR gas. Velocity-resolved RM and ionization mapping analyses revealed rapid and significant changes in the BLR geometry and kinematics on timescales of less than a year, which cannot be interpreted by any single mechanism, such as an inhomogeneous BLR, variations in radiation pressure, or changes in the illuminated ionizing field. Additionally, the Hβ lags of NGC 4151 and other CL-AGNs agree with the radius–luminosity relationship established for AGNs with low accretion rates, implying that the CL phenomenon is more likely driven by intrinsic changes in the accretion rate rather than obscuration. These findings provide new insights into the complex internal processes of CL-AGNs and highlight the importance of long-term, multiline RM for understanding BLR structures, geometry, and kinematics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expanding the Inventory of Molecule-rich Planetary Nebulae: New Observations of M4-17, Hu 1-1, M1-59, and Na 2 Whole-disk Sampling of Molecular Clouds in M83 Disk2Planet: A Robust and Automated Machine Learning Tool for Parameter Inference in Disk–Planet Systems A Search for Persistent Radio Sources toward Repeating Fast Radio Bursts Discovered by CHIME/FRB Constraining Quasar Feedback from Analysis of the Hydrostatic Equilibrium of the Molecular Gas in Their Host Galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1