{"title":"非线性反应扩散方程的 BDF2 完全离散方案的超收敛分析和外推法","authors":"Conggang Liang, Dongyang Shi","doi":"10.1016/j.cnsns.2024.108446","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to propose a 2-step backward differential formula (BDF2) fully discrete scheme with the bilinear <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mn>11</mml:mn></mml:mrow></mml:msub></mml:math> finite element method (FEM) for the nonlinear reaction–diffusion equation. By use of the combination technique of the element’s interpolation and Ritz projection, and through the interpolation post-processing approach, the superclose and global superconvergence estimates with order <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> in <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-norm are deduced rigorously. Furthermore, with the help of the asymptotic error expansion of the <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:msub><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mn>11</mml:mn></mml:mrow></mml:msub></mml:math> element, a new suitable fully discrete scheme is developed, and the extrapolation result of order <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mrow><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> in <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-norm is derived, which is one order higher than that of the above traditional superconvergence estimate with respect to <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mi>h</mml:mi></mml:math>. Here <mml:math altimg=\"si7.svg\" display=\"inline\"><mml:mi>h</mml:mi></mml:math> is the mesh size and <mml:math altimg=\"si9.svg\" display=\"inline\"><mml:mi>τ</mml:mi></mml:math> is the time step. Finally, some numerical results are provided to verify the theoretical analysis. It seems that the extrapolation of the fully discrete finite element scheme has never been seen in the previous studies.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"71 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconvergence analysis and extrapolation of a BDF2 fully discrete scheme for nonlinear reaction–diffusion equations\",\"authors\":\"Conggang Liang, Dongyang Shi\",\"doi\":\"10.1016/j.cnsns.2024.108446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this paper is to propose a 2-step backward differential formula (BDF2) fully discrete scheme with the bilinear <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mn>11</mml:mn></mml:mrow></mml:msub></mml:math> finite element method (FEM) for the nonlinear reaction–diffusion equation. By use of the combination technique of the element’s interpolation and Ritz projection, and through the interpolation post-processing approach, the superclose and global superconvergence estimates with order <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> in <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-norm are deduced rigorously. Furthermore, with the help of the asymptotic error expansion of the <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:msub><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mn>11</mml:mn></mml:mrow></mml:msub></mml:math> element, a new suitable fully discrete scheme is developed, and the extrapolation result of order <mml:math altimg=\\\"si5.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>O</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>τ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> in <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-norm is derived, which is one order higher than that of the above traditional superconvergence estimate with respect to <mml:math altimg=\\\"si7.svg\\\" display=\\\"inline\\\"><mml:mi>h</mml:mi></mml:math>. Here <mml:math altimg=\\\"si7.svg\\\" display=\\\"inline\\\"><mml:mi>h</mml:mi></mml:math> is the mesh size and <mml:math altimg=\\\"si9.svg\\\" display=\\\"inline\\\"><mml:mi>τ</mml:mi></mml:math> is the time step. Finally, some numerical results are provided to verify the theoretical analysis. It seems that the extrapolation of the fully discrete finite element scheme has never been seen in the previous studies.\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cnsns.2024.108446\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2024.108446","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Superconvergence analysis and extrapolation of a BDF2 fully discrete scheme for nonlinear reaction–diffusion equations
The main aim of this paper is to propose a 2-step backward differential formula (BDF2) fully discrete scheme with the bilinear Q11 finite element method (FEM) for the nonlinear reaction–diffusion equation. By use of the combination technique of the element’s interpolation and Ritz projection, and through the interpolation post-processing approach, the superclose and global superconvergence estimates with order O(h2+τ2) in H1-norm are deduced rigorously. Furthermore, with the help of the asymptotic error expansion of the Q11 element, a new suitable fully discrete scheme is developed, and the extrapolation result of order O(h3+τ2) in H1-norm is derived, which is one order higher than that of the above traditional superconvergence estimate with respect to h. Here h is the mesh size and τ is the time step. Finally, some numerical results are provided to verify the theoretical analysis. It seems that the extrapolation of the fully discrete finite element scheme has never been seen in the previous studies.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.