Tinghuai Ma, Yuming Su, Mohamed Magdy Abdel Wahab, Alaa Abd ELraouf Khalil
{"title":"ZPDSN:利用拓扑数据分析进行时空气象预报","authors":"Tinghuai Ma, Yuming Su, Mohamed Magdy Abdel Wahab, Alaa Abd ELraouf Khalil","doi":"10.1007/s10489-024-06053-1","DOIUrl":null,"url":null,"abstract":"<div><p>Meteorological forecasting is of paramount importance for safeguarding human life, mitigating natural disasters, and promoting economic development. However, achieving precise forecasts poses significant challenges owing to the complexities associated with feature representation in observed meteorological data and the dynamic spatio-temporal dependencies therein. Graph Neural Networks (GNNs) have gained prominence in addressing spatio-temporal forecasting challenges, owing to their ability to model non-Euclidean data structures and capture spatio-temporal dependencies. However, existing GNN-based methods lead to obscure of spatio-temporal patterns between nodes due to the over-smoothing problem. Worse still, important high-order structural information is lost during GNN propagation. Topological Data Analysis (TDA), a synthesis of mathematical analysis and machine learning methodologies that can mine the higher-order features present in the data itself, offers a novel perspective for addressing cross-domain spatio-temporal meteorological forecasting tasks. To leverage above problems more effectively and empower GNN with time-aware ability, a new spatio-temporal meteorological forecasting model with topological data analysis is proposed, called Zigzag Persistence with subgraph Decomposition and Supra-graph construction Network (ZPDSN), which can dynamically simulate meteorological data across the spatio-temporal domain. The adjacency matrix for the final spatial dimension is derived by treating the topological features captured via zigzag persistence as a high-order representation of the data, and by introducing subgraph decomposition and supra-graph construction mechanisms to better capture spatial-temporal correlations. ZPDSN outperforms other GNN-based models on four meteorological datasets, namely, temperature, cloud cover, humidity and surface wind component.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZPDSN: spatio-temporal meteorological forecasting with topological data analysis\",\"authors\":\"Tinghuai Ma, Yuming Su, Mohamed Magdy Abdel Wahab, Alaa Abd ELraouf Khalil\",\"doi\":\"10.1007/s10489-024-06053-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Meteorological forecasting is of paramount importance for safeguarding human life, mitigating natural disasters, and promoting economic development. However, achieving precise forecasts poses significant challenges owing to the complexities associated with feature representation in observed meteorological data and the dynamic spatio-temporal dependencies therein. Graph Neural Networks (GNNs) have gained prominence in addressing spatio-temporal forecasting challenges, owing to their ability to model non-Euclidean data structures and capture spatio-temporal dependencies. However, existing GNN-based methods lead to obscure of spatio-temporal patterns between nodes due to the over-smoothing problem. Worse still, important high-order structural information is lost during GNN propagation. Topological Data Analysis (TDA), a synthesis of mathematical analysis and machine learning methodologies that can mine the higher-order features present in the data itself, offers a novel perspective for addressing cross-domain spatio-temporal meteorological forecasting tasks. To leverage above problems more effectively and empower GNN with time-aware ability, a new spatio-temporal meteorological forecasting model with topological data analysis is proposed, called Zigzag Persistence with subgraph Decomposition and Supra-graph construction Network (ZPDSN), which can dynamically simulate meteorological data across the spatio-temporal domain. The adjacency matrix for the final spatial dimension is derived by treating the topological features captured via zigzag persistence as a high-order representation of the data, and by introducing subgraph decomposition and supra-graph construction mechanisms to better capture spatial-temporal correlations. ZPDSN outperforms other GNN-based models on four meteorological datasets, namely, temperature, cloud cover, humidity and surface wind component.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-06053-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06053-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ZPDSN: spatio-temporal meteorological forecasting with topological data analysis
Meteorological forecasting is of paramount importance for safeguarding human life, mitigating natural disasters, and promoting economic development. However, achieving precise forecasts poses significant challenges owing to the complexities associated with feature representation in observed meteorological data and the dynamic spatio-temporal dependencies therein. Graph Neural Networks (GNNs) have gained prominence in addressing spatio-temporal forecasting challenges, owing to their ability to model non-Euclidean data structures and capture spatio-temporal dependencies. However, existing GNN-based methods lead to obscure of spatio-temporal patterns between nodes due to the over-smoothing problem. Worse still, important high-order structural information is lost during GNN propagation. Topological Data Analysis (TDA), a synthesis of mathematical analysis and machine learning methodologies that can mine the higher-order features present in the data itself, offers a novel perspective for addressing cross-domain spatio-temporal meteorological forecasting tasks. To leverage above problems more effectively and empower GNN with time-aware ability, a new spatio-temporal meteorological forecasting model with topological data analysis is proposed, called Zigzag Persistence with subgraph Decomposition and Supra-graph construction Network (ZPDSN), which can dynamically simulate meteorological data across the spatio-temporal domain. The adjacency matrix for the final spatial dimension is derived by treating the topological features captured via zigzag persistence as a high-order representation of the data, and by introducing subgraph decomposition and supra-graph construction mechanisms to better capture spatial-temporal correlations. ZPDSN outperforms other GNN-based models on four meteorological datasets, namely, temperature, cloud cover, humidity and surface wind component.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.