Alvaro S. Neto, Steven Wainaina, Konstantinos Chandolias, Pawel Piatek, Mohammad J. Taherzadeh
{"title":"探索合成气发酵回收高价值资源的潜力:全面综述","authors":"Alvaro S. Neto, Steven Wainaina, Konstantinos Chandolias, Pawel Piatek, Mohammad J. Taherzadeh","doi":"10.1007/s40726-024-00337-3","DOIUrl":null,"url":null,"abstract":"<div><p>Synthesis gas (syngas) fermentation represents a promising biological method for converting industrial waste gases, particularly carbon monoxide (CO) and carbon dioxide (CO₂) from industrial sources (e.g. steel production or municipal waste gasification), into high-value products such as biofuels, chemicals, and animal feed using acetogenic bacteria. This review identifies and addresses key challenges that hinder the large-scale adoption of this technology, including limitations in gas mass transfer, an incomplete understanding of microbial metabolic pathways, and suboptimal bioprocess conditions. Our findings emphasize the critical role of microbial strain selection and bioprocess optimization to enhance productivity and scalability, with a focus on utilizing diverse microbial consortia and efficient reactor systems. By examining recent advancements in microbial conditioning, operational parameters, and reactor design, this study provides actionable insights to improve syngas fermentation efficiency, suggesting pathways towards overcoming current technical barriers for its broader industrial application beyond the production of bulk chemicals.</p></div>","PeriodicalId":528,"journal":{"name":"Current Pollution Reports","volume":"11 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40726-024-00337-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring the Potential of Syngas Fermentation for Recovery of High-Value Resources: A Comprehensive Review\",\"authors\":\"Alvaro S. Neto, Steven Wainaina, Konstantinos Chandolias, Pawel Piatek, Mohammad J. Taherzadeh\",\"doi\":\"10.1007/s40726-024-00337-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthesis gas (syngas) fermentation represents a promising biological method for converting industrial waste gases, particularly carbon monoxide (CO) and carbon dioxide (CO₂) from industrial sources (e.g. steel production or municipal waste gasification), into high-value products such as biofuels, chemicals, and animal feed using acetogenic bacteria. This review identifies and addresses key challenges that hinder the large-scale adoption of this technology, including limitations in gas mass transfer, an incomplete understanding of microbial metabolic pathways, and suboptimal bioprocess conditions. Our findings emphasize the critical role of microbial strain selection and bioprocess optimization to enhance productivity and scalability, with a focus on utilizing diverse microbial consortia and efficient reactor systems. By examining recent advancements in microbial conditioning, operational parameters, and reactor design, this study provides actionable insights to improve syngas fermentation efficiency, suggesting pathways towards overcoming current technical barriers for its broader industrial application beyond the production of bulk chemicals.</p></div>\",\"PeriodicalId\":528,\"journal\":{\"name\":\"Current Pollution Reports\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40726-024-00337-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Pollution Reports\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40726-024-00337-3\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pollution Reports","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40726-024-00337-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Exploring the Potential of Syngas Fermentation for Recovery of High-Value Resources: A Comprehensive Review
Synthesis gas (syngas) fermentation represents a promising biological method for converting industrial waste gases, particularly carbon monoxide (CO) and carbon dioxide (CO₂) from industrial sources (e.g. steel production or municipal waste gasification), into high-value products such as biofuels, chemicals, and animal feed using acetogenic bacteria. This review identifies and addresses key challenges that hinder the large-scale adoption of this technology, including limitations in gas mass transfer, an incomplete understanding of microbial metabolic pathways, and suboptimal bioprocess conditions. Our findings emphasize the critical role of microbial strain selection and bioprocess optimization to enhance productivity and scalability, with a focus on utilizing diverse microbial consortia and efficient reactor systems. By examining recent advancements in microbial conditioning, operational parameters, and reactor design, this study provides actionable insights to improve syngas fermentation efficiency, suggesting pathways towards overcoming current technical barriers for its broader industrial application beyond the production of bulk chemicals.
期刊介绍:
Current Pollution Reports provides in-depth review articles contributed by international experts on the most significant developments in the field of environmental pollution.By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to identification, characterization, treatment, management of pollutants and much more.