A. A. Abduvaliev, A. V. Agapov, V. M. Breev, G. V. Mytsin, J. H. Khushvaktov, S. S. Uglova, K. N. Shipulin
{"title":"用于放射治疗的质子束布拉格峰修正技术","authors":"A. A. Abduvaliev, A. V. Agapov, V. M. Breev, G. V. Mytsin, J. H. Khushvaktov, S. S. Uglova, K. N. Shipulin","doi":"10.1134/S1547477124701747","DOIUrl":null,"url":null,"abstract":"<p>JINR in collaboration with the St. Petersburg-based Efremov Institute of Electrophysical Apparatus (NIIEFA) is developing a superconducting isochronous cyclotron MSC230, which is intended to conduct research in radiobiology and to develop proton flash radiotherapy techniques. In relation to this, formation of a high-intensity proton beam with the energy selectable in a range of 120–230 MeV, a dose rate of 50–100 Gy/s, and homogeneous in cross section with a diameter of 13–15 cm at the new accelerator is explored. Results of modeling by the Monte Carlo method and measurements of the depth-dose distributions of a proton beam, the energy spectrum of which is modified to obtain an extended homogeneous plateau at the end of the range (spread-out Bragg peak), are presented. This is achieved by using so-called ridge filters. A method for design and manufacturing ridge filters using a 3D printer that can change the length of the plateau in a fairly wide range of values by rotating it relative to the beam axis is presented. The results of the study lend a hope that two sets, each consisting of 5–6 such filters, will be able to span the entire required range of the Bragg peak plateau, and for all values of the selected energy.</p>","PeriodicalId":730,"journal":{"name":"Physics of Particles and Nuclei Letters","volume":"21 6","pages":"1174 - 1180"},"PeriodicalIF":0.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technique of Modification of the Bragg Peak of a Proton Beam for Radiotherapy\",\"authors\":\"A. A. Abduvaliev, A. V. Agapov, V. M. Breev, G. V. Mytsin, J. H. Khushvaktov, S. S. Uglova, K. N. Shipulin\",\"doi\":\"10.1134/S1547477124701747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>JINR in collaboration with the St. Petersburg-based Efremov Institute of Electrophysical Apparatus (NIIEFA) is developing a superconducting isochronous cyclotron MSC230, which is intended to conduct research in radiobiology and to develop proton flash radiotherapy techniques. In relation to this, formation of a high-intensity proton beam with the energy selectable in a range of 120–230 MeV, a dose rate of 50–100 Gy/s, and homogeneous in cross section with a diameter of 13–15 cm at the new accelerator is explored. Results of modeling by the Monte Carlo method and measurements of the depth-dose distributions of a proton beam, the energy spectrum of which is modified to obtain an extended homogeneous plateau at the end of the range (spread-out Bragg peak), are presented. This is achieved by using so-called ridge filters. A method for design and manufacturing ridge filters using a 3D printer that can change the length of the plateau in a fairly wide range of values by rotating it relative to the beam axis is presented. The results of the study lend a hope that two sets, each consisting of 5–6 such filters, will be able to span the entire required range of the Bragg peak plateau, and for all values of the selected energy.</p>\",\"PeriodicalId\":730,\"journal\":{\"name\":\"Physics of Particles and Nuclei Letters\",\"volume\":\"21 6\",\"pages\":\"1174 - 1180\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Particles and Nuclei Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1547477124701747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Particles and Nuclei Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1547477124701747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Technique of Modification of the Bragg Peak of a Proton Beam for Radiotherapy
JINR in collaboration with the St. Petersburg-based Efremov Institute of Electrophysical Apparatus (NIIEFA) is developing a superconducting isochronous cyclotron MSC230, which is intended to conduct research in radiobiology and to develop proton flash radiotherapy techniques. In relation to this, formation of a high-intensity proton beam with the energy selectable in a range of 120–230 MeV, a dose rate of 50–100 Gy/s, and homogeneous in cross section with a diameter of 13–15 cm at the new accelerator is explored. Results of modeling by the Monte Carlo method and measurements of the depth-dose distributions of a proton beam, the energy spectrum of which is modified to obtain an extended homogeneous plateau at the end of the range (spread-out Bragg peak), are presented. This is achieved by using so-called ridge filters. A method for design and manufacturing ridge filters using a 3D printer that can change the length of the plateau in a fairly wide range of values by rotating it relative to the beam axis is presented. The results of the study lend a hope that two sets, each consisting of 5–6 such filters, will be able to span the entire required range of the Bragg peak plateau, and for all values of the selected energy.
期刊介绍:
The journal Physics of Particles and Nuclei Letters, brief name Particles and Nuclei Letters, publishes the articles with results of the original theoretical, experimental, scientific-technical, methodological and applied research. Subject matter of articles covers: theoretical physics, elementary particle physics, relativistic nuclear physics, nuclear physics and related problems in other branches of physics, neutron physics, condensed matter physics, physics and engineering at low temperatures, physics and engineering of accelerators, physical experimental instruments and methods, physical computation experiments, applied research in these branches of physics and radiology, ecology and nuclear medicine.