极地日光层磁性漏斗的内部结构

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Solar System Research Pub Date : 2024-11-21 DOI:10.1134/S003809462460104X
R. A. Kislov
{"title":"极地日光层磁性漏斗的内部结构","authors":"R. A. Kislov","doi":"10.1134/S003809462460104X","DOIUrl":null,"url":null,"abstract":"<p>According to data obtained by the <i>Ulysses</i> spacecraft in 2017, high-latitude current sheets have been discovered in the polar heliosphere. They have been observed during solar activity minima in 1994 and 2007 at a distance of 2–3 AU above the south pole of the Sun. The discovered current sheets formed a conical surface rotating as a whole around the Sun’s rotation axis with the Carrington period. In this study, a semianalytical MHD model of conical current sheets is developed. The internal structure of heliospheric region bounded by these sheets—a magnetic funnel with reduced solar wind speed and the plasma beta—has been studied. Solutions corresponding to different intersections of the funnel by the <i>Ulysses</i> spacecraft have been obtained under different conditions near the Sun. The conditions under which the dimensions of the funnel agree with observations are clarified. For the first time, situations are treated in which the plasma and magnetic field parameters inside the funnel vary quasi-periodically in space. The study of the magnetic funnel structure challenges new issues for solar physics, whose solutions will enable a better understanding of the physical conditions on the early Earth and the features of the primary biosphere formation.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":"58 1 supplement","pages":"S105 - S114"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal Structure of the Magnetic Funnel in the Polar Heliosphere\",\"authors\":\"R. A. Kislov\",\"doi\":\"10.1134/S003809462460104X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>According to data obtained by the <i>Ulysses</i> spacecraft in 2017, high-latitude current sheets have been discovered in the polar heliosphere. They have been observed during solar activity minima in 1994 and 2007 at a distance of 2–3 AU above the south pole of the Sun. The discovered current sheets formed a conical surface rotating as a whole around the Sun’s rotation axis with the Carrington period. In this study, a semianalytical MHD model of conical current sheets is developed. The internal structure of heliospheric region bounded by these sheets—a magnetic funnel with reduced solar wind speed and the plasma beta—has been studied. Solutions corresponding to different intersections of the funnel by the <i>Ulysses</i> spacecraft have been obtained under different conditions near the Sun. The conditions under which the dimensions of the funnel agree with observations are clarified. For the first time, situations are treated in which the plasma and magnetic field parameters inside the funnel vary quasi-periodically in space. The study of the magnetic funnel structure challenges new issues for solar physics, whose solutions will enable a better understanding of the physical conditions on the early Earth and the features of the primary biosphere formation.</p>\",\"PeriodicalId\":778,\"journal\":{\"name\":\"Solar System Research\",\"volume\":\"58 1 supplement\",\"pages\":\"S105 - S114\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar System Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S003809462460104X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S003809462460104X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

根据尤利西斯航天器2017年获得的数据,在极地日光层发现了高纬度电流片。在1994年和2007年太阳活动最小期间,在太阳南极上方2-3天文单位的距离处观测到了它们。所发现的电流片形成了一个圆锥形表面,以卡林顿周期围绕太阳自转轴整体旋转。本研究建立了锥形电流片的半解析 MHD 模型。研究了以这些电流片为边界的日光层区域的内部结构--太阳风速度降低的磁漏斗和等离子体β。在太阳附近的不同条件下,获得了与尤利西斯航天器在漏斗的不同交叉点相对应的解。澄清了漏斗尺寸与观测结果一致的条件。首次处理了漏斗内等离子体和磁场参数在空间准周期变化的情况。磁漏斗结构的研究对太阳物理学提出了新的挑战,解决这些问题将有助于更好地了解早期地球的物理条件和初级生物圈形成的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Internal Structure of the Magnetic Funnel in the Polar Heliosphere

According to data obtained by the Ulysses spacecraft in 2017, high-latitude current sheets have been discovered in the polar heliosphere. They have been observed during solar activity minima in 1994 and 2007 at a distance of 2–3 AU above the south pole of the Sun. The discovered current sheets formed a conical surface rotating as a whole around the Sun’s rotation axis with the Carrington period. In this study, a semianalytical MHD model of conical current sheets is developed. The internal structure of heliospheric region bounded by these sheets—a magnetic funnel with reduced solar wind speed and the plasma beta—has been studied. Solutions corresponding to different intersections of the funnel by the Ulysses spacecraft have been obtained under different conditions near the Sun. The conditions under which the dimensions of the funnel agree with observations are clarified. For the first time, situations are treated in which the plasma and magnetic field parameters inside the funnel vary quasi-periodically in space. The study of the magnetic funnel structure challenges new issues for solar physics, whose solutions will enable a better understanding of the physical conditions on the early Earth and the features of the primary biosphere formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar System Research
Solar System Research 地学天文-天文与天体物理
CiteScore
1.60
自引率
33.30%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.
期刊最新文献
Origin of Life on Earth and the Space Project Luna-28 Search for Extraterrestrial Life: the “Goldilocks Zone” vs. the “Snow Maiden Zone” Survival and Transfer of Microorganisms beyond the Earth: To What Extent are Microorganisms Tolerant to External Influences? Extra-Atmospheric Astronomy and the New James Webb Space Telescope Migration of Celestial Bodies in the Solar System and in Some Exoplanetary Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1