{"title":"基于纳米絮凝剂的槲皮素递送具有更高的治疗潜力:配方、细胞毒性和药代动力学研究","authors":"Harshad S. Kapare, Nagesh Patil, Mayuri Bhosale, Deepak Kulkarni, Ritesh Bhole","doi":"10.1186/s43094-024-00732-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Quercetin has well-proven anticancer potential through various mechanisms, but its applications in drug delivery are limited due to poor biopharmaceutical properties. The present study was aimed to formulate quercetin nanocochleates (QNC) in order to overcome these limitations. QNC formulation was fabricated by a trapping method, optimized and evaluated for various formulation aspects, in vitro cytotoxicity and pharmacokinetic parameters.</p><h3>Result</h3><p>Developed nanocochleates possess particle size and encapsulation efficiency of 205.6 ± 2.55 nm and 76.36 ± 0.88%, respectively. In vitro cytotoxicity study performed using MCF-7 cell lines revealed the comparative efficiency of QNC over pure quercetin. Total growth inhibition concentration (TGI) for pure quercetin was 96.73 μg/ml, while for QNC it was 83.29 μg/ml. Pharmacokinetic study results showed improvement in Cmax and AUC after QNC formulation with increased Tmax showing sustained release.</p><h3>Conclusion</h3><p>Overall, the developed QNC formulation markedly improved cytotoxic potential and biopharmaceutical aspects.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00732-z","citationCount":"0","resultStr":"{\"title\":\"Nanocochleate-based delivery of quercetin with enhanced therapeutic potential: formulation, cytotoxicity and pharmacokinetics study\",\"authors\":\"Harshad S. Kapare, Nagesh Patil, Mayuri Bhosale, Deepak Kulkarni, Ritesh Bhole\",\"doi\":\"10.1186/s43094-024-00732-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Quercetin has well-proven anticancer potential through various mechanisms, but its applications in drug delivery are limited due to poor biopharmaceutical properties. The present study was aimed to formulate quercetin nanocochleates (QNC) in order to overcome these limitations. QNC formulation was fabricated by a trapping method, optimized and evaluated for various formulation aspects, in vitro cytotoxicity and pharmacokinetic parameters.</p><h3>Result</h3><p>Developed nanocochleates possess particle size and encapsulation efficiency of 205.6 ± 2.55 nm and 76.36 ± 0.88%, respectively. In vitro cytotoxicity study performed using MCF-7 cell lines revealed the comparative efficiency of QNC over pure quercetin. Total growth inhibition concentration (TGI) for pure quercetin was 96.73 μg/ml, while for QNC it was 83.29 μg/ml. Pharmacokinetic study results showed improvement in Cmax and AUC after QNC formulation with increased Tmax showing sustained release.</p><h3>Conclusion</h3><p>Overall, the developed QNC formulation markedly improved cytotoxic potential and biopharmaceutical aspects.</p></div>\",\"PeriodicalId\":577,\"journal\":{\"name\":\"Future Journal of Pharmaceutical Sciences\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-024-00732-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43094-024-00732-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-024-00732-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Nanocochleate-based delivery of quercetin with enhanced therapeutic potential: formulation, cytotoxicity and pharmacokinetics study
Background
Quercetin has well-proven anticancer potential through various mechanisms, but its applications in drug delivery are limited due to poor biopharmaceutical properties. The present study was aimed to formulate quercetin nanocochleates (QNC) in order to overcome these limitations. QNC formulation was fabricated by a trapping method, optimized and evaluated for various formulation aspects, in vitro cytotoxicity and pharmacokinetic parameters.
Result
Developed nanocochleates possess particle size and encapsulation efficiency of 205.6 ± 2.55 nm and 76.36 ± 0.88%, respectively. In vitro cytotoxicity study performed using MCF-7 cell lines revealed the comparative efficiency of QNC over pure quercetin. Total growth inhibition concentration (TGI) for pure quercetin was 96.73 μg/ml, while for QNC it was 83.29 μg/ml. Pharmacokinetic study results showed improvement in Cmax and AUC after QNC formulation with increased Tmax showing sustained release.
Conclusion
Overall, the developed QNC formulation markedly improved cytotoxic potential and biopharmaceutical aspects.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.