{"title":"求解 PDE 的新范例:多尺度神经计算","authors":"Wei Suo \n (, ), Weiwei Zhang \n (, )","doi":"10.1007/s10409-024-24172-x","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulation is dominant in solving partial differential equations (PDEs), but balancing fine-grained grids with low computational costs is challenging. Recently, solving PDEs with neural networks (NNs) has gained interest, yet cost-effectiveness and high accuracy remain a challenge. This work introduces a novel paradigm for solving PDEs, called multi-scale neural computing (MSNC), considering spectral bias of NNs and local approximation properties in the finite difference method (FDM). The MSNC decomposes the solution with a NN for efficient capture of global scale and the FDM for detailed description of local scale, aiming to balance costs and accuracy. Demonstrated advantages include higher accuracy (10 times for 1D PDEs, 20 times for 2D PDEs) and lower costs (4 times for 1D PDEs, 16 times for 2D PDEs) than the standard FDM. The MSNC also exhibits stable convergence and rigorous boundary condition satisfaction, showcasing the potential for hybrid of NN and numerical method.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel paradigm for solving PDEs: multi-scale neural computing\",\"authors\":\"Wei Suo \\n (, ), Weiwei Zhang \\n (, )\",\"doi\":\"10.1007/s10409-024-24172-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerical simulation is dominant in solving partial differential equations (PDEs), but balancing fine-grained grids with low computational costs is challenging. Recently, solving PDEs with neural networks (NNs) has gained interest, yet cost-effectiveness and high accuracy remain a challenge. This work introduces a novel paradigm for solving PDEs, called multi-scale neural computing (MSNC), considering spectral bias of NNs and local approximation properties in the finite difference method (FDM). The MSNC decomposes the solution with a NN for efficient capture of global scale and the FDM for detailed description of local scale, aiming to balance costs and accuracy. Demonstrated advantages include higher accuracy (10 times for 1D PDEs, 20 times for 2D PDEs) and lower costs (4 times for 1D PDEs, 16 times for 2D PDEs) than the standard FDM. The MSNC also exhibits stable convergence and rigorous boundary condition satisfaction, showcasing the potential for hybrid of NN and numerical method.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"41 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-024-24172-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24172-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A novel paradigm for solving PDEs: multi-scale neural computing
Numerical simulation is dominant in solving partial differential equations (PDEs), but balancing fine-grained grids with low computational costs is challenging. Recently, solving PDEs with neural networks (NNs) has gained interest, yet cost-effectiveness and high accuracy remain a challenge. This work introduces a novel paradigm for solving PDEs, called multi-scale neural computing (MSNC), considering spectral bias of NNs and local approximation properties in the finite difference method (FDM). The MSNC decomposes the solution with a NN for efficient capture of global scale and the FDM for detailed description of local scale, aiming to balance costs and accuracy. Demonstrated advantages include higher accuracy (10 times for 1D PDEs, 20 times for 2D PDEs) and lower costs (4 times for 1D PDEs, 16 times for 2D PDEs) than the standard FDM. The MSNC also exhibits stable convergence and rigorous boundary condition satisfaction, showcasing the potential for hybrid of NN and numerical method.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics