Alexander Tate Lasher, Kaimao Liu, Michael P Fitch, Liou Y Sun
{"title":"分离生长激素对小鼠寿命和新陈代谢的直接影响。","authors":"Alexander Tate Lasher, Kaimao Liu, Michael P Fitch, Liou Y Sun","doi":"10.1111/acel.14412","DOIUrl":null,"url":null,"abstract":"<p><p>Prior studies have shown that interrupting the growth hormone/insulin-like growth factor-I (GH/IGF-I) signaling axis extends laboratory mouse lifespan, but confounding effects of additional gene or hormone deficiencies that exist in commonly used models of GH/IGF-I interruption obscure the specific effect of GH on longevity. We address this issue by using mice with a specific knockout of the GH gene and show that both males and females on a mixed genetic background display extended lifespans resulting from GH deficiency. Our physiological assessment of these mice revealed that in addition to weighing significantly less and displaying significantly greater body fat (as a percentage of body weight), GH deficient mice display significant impairments in glucose metabolism and preferential fat utilization. These data provide strong evidence that GH deficiency is directly responsible for the altered nutrient utilization and extended lifespan that is commonly observed in mouse models of GH/IGF-I interruption.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14412"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolating the direct effects of growth hormone on lifespan and metabolism in mice.\",\"authors\":\"Alexander Tate Lasher, Kaimao Liu, Michael P Fitch, Liou Y Sun\",\"doi\":\"10.1111/acel.14412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prior studies have shown that interrupting the growth hormone/insulin-like growth factor-I (GH/IGF-I) signaling axis extends laboratory mouse lifespan, but confounding effects of additional gene or hormone deficiencies that exist in commonly used models of GH/IGF-I interruption obscure the specific effect of GH on longevity. We address this issue by using mice with a specific knockout of the GH gene and show that both males and females on a mixed genetic background display extended lifespans resulting from GH deficiency. Our physiological assessment of these mice revealed that in addition to weighing significantly less and displaying significantly greater body fat (as a percentage of body weight), GH deficient mice display significant impairments in glucose metabolism and preferential fat utilization. These data provide strong evidence that GH deficiency is directly responsible for the altered nutrient utilization and extended lifespan that is commonly observed in mouse models of GH/IGF-I interruption.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\" \",\"pages\":\"e14412\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14412\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14412","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Isolating the direct effects of growth hormone on lifespan and metabolism in mice.
Prior studies have shown that interrupting the growth hormone/insulin-like growth factor-I (GH/IGF-I) signaling axis extends laboratory mouse lifespan, but confounding effects of additional gene or hormone deficiencies that exist in commonly used models of GH/IGF-I interruption obscure the specific effect of GH on longevity. We address this issue by using mice with a specific knockout of the GH gene and show that both males and females on a mixed genetic background display extended lifespans resulting from GH deficiency. Our physiological assessment of these mice revealed that in addition to weighing significantly less and displaying significantly greater body fat (as a percentage of body weight), GH deficient mice display significant impairments in glucose metabolism and preferential fat utilization. These data provide strong evidence that GH deficiency is directly responsible for the altered nutrient utilization and extended lifespan that is commonly observed in mouse models of GH/IGF-I interruption.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.