{"title":"合成β-内酰胺-齐多夫定代核苷作为潜在的选择性窄谱抗菌剂。","authors":"Miyanou Rosales-Hurtado, Fanny Faure, Filomena Sannio, Federica Verdirosa, Georges Feller, Elodie Carretero, Yen Vo-Hoang, Patricia Licznar-Fajardo, Suzanne Peyrottes, Jean-Denis Docquier, Laurent Gavara","doi":"10.1039/d4ob01396d","DOIUrl":null,"url":null,"abstract":"<p><p>Since the discovery of penicillin, the forerunner of the most widely used class of antibiotics (<i>i.e.</i> β-lactams), natural compounds and their derivatives represented a major source of antibacterial therapeutic products whose availability enabled modern medical practices (invasive surgery, organ transplant, <i>etc</i>.). However, the relentless emergence of resistant bacteria is challenging the long-term efficacy of antibiotics, also decreasing their economic attractiveness for big pharma, leading to a significant decay in antibacterial development in the 21<sup>st</sup> century and an increased use of last-resort drugs such as carbapenems or colistin. Indeed, bacteria evolved an arsenal of resistance mechanisms, leading to the emergence of totally-drug resistant isolates, already sporadically isolated among Gram-negative bacterial species. To face this deadly peril, it is fundamental to explore new ground-breaking approaches. In view of the significance of both β-lactam antibiotics and the production of one or more β-lactamases as the major resistance mechanism (especially in Gram-negative bacteria), we implemented an original approach to selectively deliver antibacterial zidovudine (AZT) exploiting the β-lactamase-mediated hydrolysis of a β-lactam-conjugate prodrug. The synthesis of the targeted pronucleosides was performed in 5-7 steps and based on an original Pd-catalyzed cross-coupling reaction. Enzymatic and microbiological evaluations were performed to evaluate the synthesized pronucleosides, yielding new insights into molecular recognition of β-lactamase enzymes. This approach would potentially allow a targeted and selective eradication of antibiotic-resistant β-lactamase-producing (opportunistic) pathogens, as the inactive prodrug is unable to harm the commensal microbial flora.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of β-lactam-zidovudine pronucleosides as potential selective narrow-spectrum antibacterial agents.\",\"authors\":\"Miyanou Rosales-Hurtado, Fanny Faure, Filomena Sannio, Federica Verdirosa, Georges Feller, Elodie Carretero, Yen Vo-Hoang, Patricia Licznar-Fajardo, Suzanne Peyrottes, Jean-Denis Docquier, Laurent Gavara\",\"doi\":\"10.1039/d4ob01396d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the discovery of penicillin, the forerunner of the most widely used class of antibiotics (<i>i.e.</i> β-lactams), natural compounds and their derivatives represented a major source of antibacterial therapeutic products whose availability enabled modern medical practices (invasive surgery, organ transplant, <i>etc</i>.). However, the relentless emergence of resistant bacteria is challenging the long-term efficacy of antibiotics, also decreasing their economic attractiveness for big pharma, leading to a significant decay in antibacterial development in the 21<sup>st</sup> century and an increased use of last-resort drugs such as carbapenems or colistin. Indeed, bacteria evolved an arsenal of resistance mechanisms, leading to the emergence of totally-drug resistant isolates, already sporadically isolated among Gram-negative bacterial species. To face this deadly peril, it is fundamental to explore new ground-breaking approaches. In view of the significance of both β-lactam antibiotics and the production of one or more β-lactamases as the major resistance mechanism (especially in Gram-negative bacteria), we implemented an original approach to selectively deliver antibacterial zidovudine (AZT) exploiting the β-lactamase-mediated hydrolysis of a β-lactam-conjugate prodrug. The synthesis of the targeted pronucleosides was performed in 5-7 steps and based on an original Pd-catalyzed cross-coupling reaction. Enzymatic and microbiological evaluations were performed to evaluate the synthesized pronucleosides, yielding new insights into molecular recognition of β-lactamase enzymes. This approach would potentially allow a targeted and selective eradication of antibiotic-resistant β-lactamase-producing (opportunistic) pathogens, as the inactive prodrug is unable to harm the commensal microbial flora.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ob01396d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01396d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Synthesis of β-lactam-zidovudine pronucleosides as potential selective narrow-spectrum antibacterial agents.
Since the discovery of penicillin, the forerunner of the most widely used class of antibiotics (i.e. β-lactams), natural compounds and their derivatives represented a major source of antibacterial therapeutic products whose availability enabled modern medical practices (invasive surgery, organ transplant, etc.). However, the relentless emergence of resistant bacteria is challenging the long-term efficacy of antibiotics, also decreasing their economic attractiveness for big pharma, leading to a significant decay in antibacterial development in the 21st century and an increased use of last-resort drugs such as carbapenems or colistin. Indeed, bacteria evolved an arsenal of resistance mechanisms, leading to the emergence of totally-drug resistant isolates, already sporadically isolated among Gram-negative bacterial species. To face this deadly peril, it is fundamental to explore new ground-breaking approaches. In view of the significance of both β-lactam antibiotics and the production of one or more β-lactamases as the major resistance mechanism (especially in Gram-negative bacteria), we implemented an original approach to selectively deliver antibacterial zidovudine (AZT) exploiting the β-lactamase-mediated hydrolysis of a β-lactam-conjugate prodrug. The synthesis of the targeted pronucleosides was performed in 5-7 steps and based on an original Pd-catalyzed cross-coupling reaction. Enzymatic and microbiological evaluations were performed to evaluate the synthesized pronucleosides, yielding new insights into molecular recognition of β-lactamase enzymes. This approach would potentially allow a targeted and selective eradication of antibiotic-resistant β-lactamase-producing (opportunistic) pathogens, as the inactive prodrug is unable to harm the commensal microbial flora.