Daniel Gebler, Pedro Segurado, Maria Teresa Ferreira, Francisca C Aguiar
{"title":"利用大型藻类预测淡水生物质量:经验建模方法比较。","authors":"Daniel Gebler, Pedro Segurado, Maria Teresa Ferreira, Francisca C Aguiar","doi":"10.1007/s11356-024-35497-8","DOIUrl":null,"url":null,"abstract":"<p><p>Difficulties have hampered bioassessment in southern European rivers due to limited reference data and the unclear impact of multiple interacting stressors on plant communities. Predictive modelling may help overcome this limitation by aggregating different pressures affecting aquatic organisms and showing the most influential factors. We assembled a dataset of 292 Mediterranean sampling locations on perennial rivers and streams (mainland Portugal) with macrophyte and environmental data. We compared models based on multiple linear regression (MLR), boosted regression trees (BRT) and artificial neural networks (ANNs). Secondarily, we investigated the relationship between two macrophyte indices grounded in distinct conceptual premises (the Riparian Vegetation Index - RVI, and the Macrophyte Biological Index for Rivers - IBMR) and a set of environmental variables, including climatic conditions, geographical characteristics, land use, water chemistry and habitat quality of rivers. The quality of models for the IBMR was superior to those for the RVI in all cases, which indicates a better ecological linkage of IBMR with the stressor and abiotic variables. The IBMR using ANN outperformed the BRT models, for which the r-Pearson correlation coefficients were 0.877 and 0.801, and the normalised root mean square errors were 10.0 and 11.3, respectively. Variable importance analysis revealed that longitude and geology, hydrological/climatic conditions, water body size and land use had the highest impact on the IBMR model predictions. Despite the differences in the quality of the models, all showed similar importance to individual input variables, although in a different order. Despite some difficulties in model training for ANNs, our findings suggest that BRT and ANNs can be used to assess ecological quality, and for decision-making on the environmental management of rivers.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting freshwater biological quality using macrophytes: A comparison of empirical modelling approaches.\",\"authors\":\"Daniel Gebler, Pedro Segurado, Maria Teresa Ferreira, Francisca C Aguiar\",\"doi\":\"10.1007/s11356-024-35497-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Difficulties have hampered bioassessment in southern European rivers due to limited reference data and the unclear impact of multiple interacting stressors on plant communities. Predictive modelling may help overcome this limitation by aggregating different pressures affecting aquatic organisms and showing the most influential factors. We assembled a dataset of 292 Mediterranean sampling locations on perennial rivers and streams (mainland Portugal) with macrophyte and environmental data. We compared models based on multiple linear regression (MLR), boosted regression trees (BRT) and artificial neural networks (ANNs). Secondarily, we investigated the relationship between two macrophyte indices grounded in distinct conceptual premises (the Riparian Vegetation Index - RVI, and the Macrophyte Biological Index for Rivers - IBMR) and a set of environmental variables, including climatic conditions, geographical characteristics, land use, water chemistry and habitat quality of rivers. The quality of models for the IBMR was superior to those for the RVI in all cases, which indicates a better ecological linkage of IBMR with the stressor and abiotic variables. The IBMR using ANN outperformed the BRT models, for which the r-Pearson correlation coefficients were 0.877 and 0.801, and the normalised root mean square errors were 10.0 and 11.3, respectively. Variable importance analysis revealed that longitude and geology, hydrological/climatic conditions, water body size and land use had the highest impact on the IBMR model predictions. Despite the differences in the quality of the models, all showed similar importance to individual input variables, although in a different order. Despite some difficulties in model training for ANNs, our findings suggest that BRT and ANNs can be used to assess ecological quality, and for decision-making on the environmental management of rivers.</p>\",\"PeriodicalId\":545,\"journal\":{\"name\":\"Environmental Science and Pollution Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11356-024-35497-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35497-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Predicting freshwater biological quality using macrophytes: A comparison of empirical modelling approaches.
Difficulties have hampered bioassessment in southern European rivers due to limited reference data and the unclear impact of multiple interacting stressors on plant communities. Predictive modelling may help overcome this limitation by aggregating different pressures affecting aquatic organisms and showing the most influential factors. We assembled a dataset of 292 Mediterranean sampling locations on perennial rivers and streams (mainland Portugal) with macrophyte and environmental data. We compared models based on multiple linear regression (MLR), boosted regression trees (BRT) and artificial neural networks (ANNs). Secondarily, we investigated the relationship between two macrophyte indices grounded in distinct conceptual premises (the Riparian Vegetation Index - RVI, and the Macrophyte Biological Index for Rivers - IBMR) and a set of environmental variables, including climatic conditions, geographical characteristics, land use, water chemistry and habitat quality of rivers. The quality of models for the IBMR was superior to those for the RVI in all cases, which indicates a better ecological linkage of IBMR with the stressor and abiotic variables. The IBMR using ANN outperformed the BRT models, for which the r-Pearson correlation coefficients were 0.877 and 0.801, and the normalised root mean square errors were 10.0 and 11.3, respectively. Variable importance analysis revealed that longitude and geology, hydrological/climatic conditions, water body size and land use had the highest impact on the IBMR model predictions. Despite the differences in the quality of the models, all showed similar importance to individual input variables, although in a different order. Despite some difficulties in model training for ANNs, our findings suggest that BRT and ANNs can be used to assess ecological quality, and for decision-making on the environmental management of rivers.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.