无金属 N、P-掺杂碳通过二氧化碳电解生产成分可调的合成气:解决二氧化碳还原和 H2 喷射之间的竞争问题。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-11-21 DOI:10.1002/cssc.202402249
Ryuji Takada, Hiroyuki Okada, Kotaro Narimatsu, Koji Miyake, Yoshiaki Uchida, Etsushi Tsuji, Norikazu Nishiyama
{"title":"无金属 N、P-掺杂碳通过二氧化碳电解生产成分可调的合成气:解决二氧化碳还原和 H2 喷射之间的竞争问题。","authors":"Ryuji Takada, Hiroyuki Okada, Kotaro Narimatsu, Koji Miyake, Yoshiaki Uchida, Etsushi Tsuji, Norikazu Nishiyama","doi":"10.1002/cssc.202402249","DOIUrl":null,"url":null,"abstract":"<p><p>Electroreduction of carbon dioxide into value-added fine chemicals is a promising technique to realize the carbon cycle. Recently, metal-free heteroatom doped carbons are proposed as promising cost-effective electrocatalysts for CO2 reduction reaction (CO2RR). However, the lack of understanding of the active site prevents the realization of a high-performance electrocatalyst for the CO2RR. Herein, we synthesized metal-free N, P co-doped carbons (NPCs) for producing syngas, which is composed of H2 and CO, by CO2 electrolysis using inexpensive bio-based raw materials via simple pyrolysis. The syngas ratio (H2/CO) can be controlled within the high demand range (0.3-4) at low potentials using NPCs by tuning the N and P contents. In comparison with only N doping or P doping, N and P co-doping has a positive impact on improving CO2RR activity. Experimental analysis and density functional theoretical (DFT) calculations revealed that negatively charged C atoms adjacent to N and P atoms are the most favorable active sites for CO2-to-CO conversion compared to pyridinic N on N, P co-doped carbon. Introducing N atoms generates the preferable CO2 adsorption site, and P atoms contribute to decreasing the Gibbs free energy barrier for key *COOH intermediates adsorbed on the negatively charged C atoms.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402249"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution.\",\"authors\":\"Ryuji Takada, Hiroyuki Okada, Kotaro Narimatsu, Koji Miyake, Yoshiaki Uchida, Etsushi Tsuji, Norikazu Nishiyama\",\"doi\":\"10.1002/cssc.202402249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroreduction of carbon dioxide into value-added fine chemicals is a promising technique to realize the carbon cycle. Recently, metal-free heteroatom doped carbons are proposed as promising cost-effective electrocatalysts for CO2 reduction reaction (CO2RR). However, the lack of understanding of the active site prevents the realization of a high-performance electrocatalyst for the CO2RR. Herein, we synthesized metal-free N, P co-doped carbons (NPCs) for producing syngas, which is composed of H2 and CO, by CO2 electrolysis using inexpensive bio-based raw materials via simple pyrolysis. The syngas ratio (H2/CO) can be controlled within the high demand range (0.3-4) at low potentials using NPCs by tuning the N and P contents. In comparison with only N doping or P doping, N and P co-doping has a positive impact on improving CO2RR activity. Experimental analysis and density functional theoretical (DFT) calculations revealed that negatively charged C atoms adjacent to N and P atoms are the most favorable active sites for CO2-to-CO conversion compared to pyridinic N on N, P co-doped carbon. Introducing N atoms generates the preferable CO2 adsorption site, and P atoms contribute to decreasing the Gibbs free energy barrier for key *COOH intermediates adsorbed on the negatively charged C atoms.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202402249\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202402249\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402249","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将二氧化碳电还原成高附加值精细化学品是实现碳循环的一项前景广阔的技术。最近,无金属杂原子掺杂碳被提出作为二氧化碳还原反应(CO2RR)的经济有效的电催化剂。然而,由于缺乏对活性位点的了解,阻碍了高性能 CO2RR 电催化剂的实现。在此,我们合成了无金属 N、P 共掺杂碳(NPCs),利用廉价的生物基原料,通过简单的热解,利用 CO2 电解产生由 H2 和 CO 组成的合成气。通过调整 N 和 P 的含量,NPC 可在低电位时将合成气比例(H2/CO)控制在高需求范围(0.3-4)内。与只掺杂 N 或 P 相比,N 和 P 共掺杂对提高 CO2RR 活性有积极影响。实验分析和密度泛函理论(DFT)计算显示,与 N、P 共掺杂碳上的吡啶 N 相比,邻近 N 原子和 P 原子的带负电的 C 原子是 CO2 转化为 CO 的最有利活性位点。N 原子的引入产生了更有利的 CO2 吸附位点,而 P 原子则有助于降低吸附在带负电的 C 原子上的关键 *COOH 中间产物的吉布斯自由能垒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution.

Electroreduction of carbon dioxide into value-added fine chemicals is a promising technique to realize the carbon cycle. Recently, metal-free heteroatom doped carbons are proposed as promising cost-effective electrocatalysts for CO2 reduction reaction (CO2RR). However, the lack of understanding of the active site prevents the realization of a high-performance electrocatalyst for the CO2RR. Herein, we synthesized metal-free N, P co-doped carbons (NPCs) for producing syngas, which is composed of H2 and CO, by CO2 electrolysis using inexpensive bio-based raw materials via simple pyrolysis. The syngas ratio (H2/CO) can be controlled within the high demand range (0.3-4) at low potentials using NPCs by tuning the N and P contents. In comparison with only N doping or P doping, N and P co-doping has a positive impact on improving CO2RR activity. Experimental analysis and density functional theoretical (DFT) calculations revealed that negatively charged C atoms adjacent to N and P atoms are the most favorable active sites for CO2-to-CO conversion compared to pyridinic N on N, P co-doped carbon. Introducing N atoms generates the preferable CO2 adsorption site, and P atoms contribute to decreasing the Gibbs free energy barrier for key *COOH intermediates adsorbed on the negatively charged C atoms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
A TEMPO-N3 Complex Enables the Electrochemical C-H Azidation of N-Heterocycles through the Cleavage of Alkoxyamines. PEI-templated ZIF-8 nanoparticles impart the NF membrane with high Mg2+/Li+ separation performance. Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution. Polymer Networks Assembled by Ruthenium Catalysts for Enhanced Water Splitting Performance in Calixarene Dye-Sensitized Photoelectrochemical Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1