Christopher Tuffs, Mareen Dupovac, Katrin Richter, Sophia Holten, Thomas Schaschinger, Oliver Marg, Adisa Poljo, Ayse Nur Tasdemir, Jonathan M Harnoss, Adrian Billeter, Martin Schneider, Moritz J Strowitzki
{"title":"基因缺失 HIF-Prolyl-Hydroxylase (PHD) 1(而非药物抑制)可减轻肝纤维化。","authors":"Christopher Tuffs, Mareen Dupovac, Katrin Richter, Sophia Holten, Thomas Schaschinger, Oliver Marg, Adisa Poljo, Ayse Nur Tasdemir, Jonathan M Harnoss, Adrian Billeter, Martin Schneider, Moritz J Strowitzki","doi":"10.1016/j.ajpath.2024.10.018","DOIUrl":null,"url":null,"abstract":"<p><p>Liver fibrosis is characterized by excessive deposition of extracellular-matrix (ECM) due to chronic inflammation of the liver. HSCs become activated and produce excessive amounts of ECM. Previously, we showed that loss of HIF-prolyl-hydroxylase 1 (PHD1) attenuates HSC activation and fibrotic tissue remodeling in a murine model of biliary liver fibrosis. We thus validated the protective effect of PHD1 deficiency (PHD1<sup>-/-</sup>) in an additional (toxic) model of liver fibrosis and evaluated the effect of dimethyloxalylglycine (DMOG), a pan-HIF-prolyl-hydroxylase inhibitor, on the development of liver fibrosis. Liver fibrosis was induced utilizing carbon tetrachloride (CCl<sub>4</sub>) in WT, PHD1<sup>-/-</sup>, vehicle-, and DMOG-treated mice. Livers were further analyzed by Sirius red staining and gene expression analysis of pro-fibrotic genes to assess fibrosis development. When compared to WT mice, PHD1<sup>-/-</sup> mice developed less severe liver fibrosis. In contrast, DMOG treatment did not prevent liver fibrosis. PHD1<sup>-/-</sup> mice showed a lower number of α SMA<sup>+</sup> cells and less macrophage infiltration when compared to WT mice. Gene expression of profibrogenic and proinflammatory genes was reduced in livers from CCl<sub>4</sub>-exposed PHD1<sup>-/-</sup> mice. In vitro analyses of in PHD1-deficient human HSCs revealed attenuated mRNA-levels of profibrotic genes as well as impaired migration and invasion. While PHD1 deficiency attenuates activation of HSCs, pharmacological PHD inhibition does not ameliorate fibrosis development. Selective PHD1 inhibitors could prove effective in preventing and treating liver fibrosis.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic Loss of HIF-Prolyl-Hydroxylase (PHD) 1, but not pharmacological Inhibition, mitigates hepatic fibrosis.\",\"authors\":\"Christopher Tuffs, Mareen Dupovac, Katrin Richter, Sophia Holten, Thomas Schaschinger, Oliver Marg, Adisa Poljo, Ayse Nur Tasdemir, Jonathan M Harnoss, Adrian Billeter, Martin Schneider, Moritz J Strowitzki\",\"doi\":\"10.1016/j.ajpath.2024.10.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver fibrosis is characterized by excessive deposition of extracellular-matrix (ECM) due to chronic inflammation of the liver. HSCs become activated and produce excessive amounts of ECM. Previously, we showed that loss of HIF-prolyl-hydroxylase 1 (PHD1) attenuates HSC activation and fibrotic tissue remodeling in a murine model of biliary liver fibrosis. We thus validated the protective effect of PHD1 deficiency (PHD1<sup>-/-</sup>) in an additional (toxic) model of liver fibrosis and evaluated the effect of dimethyloxalylglycine (DMOG), a pan-HIF-prolyl-hydroxylase inhibitor, on the development of liver fibrosis. Liver fibrosis was induced utilizing carbon tetrachloride (CCl<sub>4</sub>) in WT, PHD1<sup>-/-</sup>, vehicle-, and DMOG-treated mice. Livers were further analyzed by Sirius red staining and gene expression analysis of pro-fibrotic genes to assess fibrosis development. When compared to WT mice, PHD1<sup>-/-</sup> mice developed less severe liver fibrosis. In contrast, DMOG treatment did not prevent liver fibrosis. PHD1<sup>-/-</sup> mice showed a lower number of α SMA<sup>+</sup> cells and less macrophage infiltration when compared to WT mice. Gene expression of profibrogenic and proinflammatory genes was reduced in livers from CCl<sub>4</sub>-exposed PHD1<sup>-/-</sup> mice. In vitro analyses of in PHD1-deficient human HSCs revealed attenuated mRNA-levels of profibrotic genes as well as impaired migration and invasion. While PHD1 deficiency attenuates activation of HSCs, pharmacological PHD inhibition does not ameliorate fibrosis development. Selective PHD1 inhibitors could prove effective in preventing and treating liver fibrosis.</p>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajpath.2024.10.018\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2024.10.018","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Genetic Loss of HIF-Prolyl-Hydroxylase (PHD) 1, but not pharmacological Inhibition, mitigates hepatic fibrosis.
Liver fibrosis is characterized by excessive deposition of extracellular-matrix (ECM) due to chronic inflammation of the liver. HSCs become activated and produce excessive amounts of ECM. Previously, we showed that loss of HIF-prolyl-hydroxylase 1 (PHD1) attenuates HSC activation and fibrotic tissue remodeling in a murine model of biliary liver fibrosis. We thus validated the protective effect of PHD1 deficiency (PHD1-/-) in an additional (toxic) model of liver fibrosis and evaluated the effect of dimethyloxalylglycine (DMOG), a pan-HIF-prolyl-hydroxylase inhibitor, on the development of liver fibrosis. Liver fibrosis was induced utilizing carbon tetrachloride (CCl4) in WT, PHD1-/-, vehicle-, and DMOG-treated mice. Livers were further analyzed by Sirius red staining and gene expression analysis of pro-fibrotic genes to assess fibrosis development. When compared to WT mice, PHD1-/- mice developed less severe liver fibrosis. In contrast, DMOG treatment did not prevent liver fibrosis. PHD1-/- mice showed a lower number of α SMA+ cells and less macrophage infiltration when compared to WT mice. Gene expression of profibrogenic and proinflammatory genes was reduced in livers from CCl4-exposed PHD1-/- mice. In vitro analyses of in PHD1-deficient human HSCs revealed attenuated mRNA-levels of profibrotic genes as well as impaired migration and invasion. While PHD1 deficiency attenuates activation of HSCs, pharmacological PHD inhibition does not ameliorate fibrosis development. Selective PHD1 inhibitors could prove effective in preventing and treating liver fibrosis.
期刊介绍:
The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.