利用人工智能从上消化道内窥镜图像中检测幽门螺旋杆菌感染:最新系统综述和荟萃分析。

IF 2.1 Q3 GASTROENTEROLOGY & HEPATOLOGY Annals of Gastroenterology Pub Date : 2024-11-01 Epub Date: 2024-10-20 DOI:10.20524/aog.2024.0913
Om Parkash, Abhishek Lal, Tushar Subash, Ujala Sultan, Hasan Nawaz Tahir, Zahra Hoodbhoy, Shiyam Sundar, Jai Kumar Das
{"title":"利用人工智能从上消化道内窥镜图像中检测幽门螺旋杆菌感染:最新系统综述和荟萃分析。","authors":"Om Parkash, Abhishek Lal, Tushar Subash, Ujala Sultan, Hasan Nawaz Tahir, Zahra Hoodbhoy, Shiyam Sundar, Jai Kumar Das","doi":"10.20524/aog.2024.0913","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Helicobacter pylori</i> (<i>H. pylori</i>) infection is associated with various gastrointestinal diseases and may lead to gastric cancer. Currently, endoscopy is the gold standard modality used for diagnosing <i>H. pylori</i> infection, but it lacks objective indicators and requires expert interpretation. In the past few years, the use of artificial intelligence (AI) for diagnosing gastrointestinal pathologies has increased tremendously and may improve the diagnostic accuracy of endoscopy for <i>H. pylori</i> infection. This study aimed to evaluate the diagnostic accuracy of AI algorithms for detecting <i>H</i>. <i>pylori</i> infection using endoscopic images.</p><p><strong>Methods: </strong>Three investigators searched the PubMed, CINHAL and Cochrane databases for studies that compared AI algorithms with endoscopic histopathology for diagnosing <i>H. pylori</i> infection using endoscopic images. We assessed the methodological quality of studies using the QUADAS-2 tool and performed a meta-analysis to estimate the pooled sensitivity, specificity, and accuracy of AI for detecting <i>H. pylori</i> infection.</p><p><strong>Results: </strong>A total of 11 studies were identified that met our inclusion criteria. All were conducted in different countries based in Asia. Our meta-analysis showed that AI had high sensitivity (0.93, 95% confidence interval [CI] 0.90-0.95), specificity (0.92, 95%CI 0.89-0.94), and accuracy (0.92, 95%CI 0.90-0.94) for detecting <i>H. pylori</i> infection using endoscopic images. However, there was also high heterogeneity among the studies (Tau<sup>2</sup>=0.87, <i>I</i> <sup>2</sup>=76.10% for generalized effect size; Tau<sup>2</sup>=1.53, <i>I</i> <sup>2</sup>=80.72% for sensitivity; Tau<sup>2</sup>=0.57, <i>I</i> <sup>2</sup>=70.86% for specificity).</p><p><strong>Conclusion: </strong>This systematic review and meta-analysis showed that AI had high diagnostic accuracy for detecting <i>H. pylori</i> infection using endoscopic images.</p>","PeriodicalId":7978,"journal":{"name":"Annals of Gastroenterology","volume":"37 6","pages":"665-673"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574149/pdf/","citationCount":"0","resultStr":"{\"title\":\"Use of artificial intelligence for the detection of <i>Helicobacter pylori</i> infection from upper gastrointestinal endoscopy images: an updated systematic review and meta-analysis.\",\"authors\":\"Om Parkash, Abhishek Lal, Tushar Subash, Ujala Sultan, Hasan Nawaz Tahir, Zahra Hoodbhoy, Shiyam Sundar, Jai Kumar Das\",\"doi\":\"10.20524/aog.2024.0913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong><i>Helicobacter pylori</i> (<i>H. pylori</i>) infection is associated with various gastrointestinal diseases and may lead to gastric cancer. Currently, endoscopy is the gold standard modality used for diagnosing <i>H. pylori</i> infection, but it lacks objective indicators and requires expert interpretation. In the past few years, the use of artificial intelligence (AI) for diagnosing gastrointestinal pathologies has increased tremendously and may improve the diagnostic accuracy of endoscopy for <i>H. pylori</i> infection. This study aimed to evaluate the diagnostic accuracy of AI algorithms for detecting <i>H</i>. <i>pylori</i> infection using endoscopic images.</p><p><strong>Methods: </strong>Three investigators searched the PubMed, CINHAL and Cochrane databases for studies that compared AI algorithms with endoscopic histopathology for diagnosing <i>H. pylori</i> infection using endoscopic images. We assessed the methodological quality of studies using the QUADAS-2 tool and performed a meta-analysis to estimate the pooled sensitivity, specificity, and accuracy of AI for detecting <i>H. pylori</i> infection.</p><p><strong>Results: </strong>A total of 11 studies were identified that met our inclusion criteria. All were conducted in different countries based in Asia. Our meta-analysis showed that AI had high sensitivity (0.93, 95% confidence interval [CI] 0.90-0.95), specificity (0.92, 95%CI 0.89-0.94), and accuracy (0.92, 95%CI 0.90-0.94) for detecting <i>H. pylori</i> infection using endoscopic images. However, there was also high heterogeneity among the studies (Tau<sup>2</sup>=0.87, <i>I</i> <sup>2</sup>=76.10% for generalized effect size; Tau<sup>2</sup>=1.53, <i>I</i> <sup>2</sup>=80.72% for sensitivity; Tau<sup>2</sup>=0.57, <i>I</i> <sup>2</sup>=70.86% for specificity).</p><p><strong>Conclusion: </strong>This systematic review and meta-analysis showed that AI had high diagnostic accuracy for detecting <i>H. pylori</i> infection using endoscopic images.</p>\",\"PeriodicalId\":7978,\"journal\":{\"name\":\"Annals of Gastroenterology\",\"volume\":\"37 6\",\"pages\":\"665-673\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574149/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Gastroenterology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20524/aog.2024.0913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Gastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20524/aog.2024.0913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:幽门螺杆菌(H. pylori)感染与多种胃肠道疾病有关,并可能导致胃癌。目前,内窥镜检查是诊断幽门螺杆菌感染的金标准模式,但它缺乏客观指标,需要专家解读。过去几年中,人工智能(AI)在胃肠道病理诊断中的应用大幅增加,可能会提高内镜检查对幽门螺杆菌感染的诊断准确性。本研究旨在评估人工智能算法使用内窥镜图像检测幽门螺杆菌感染的诊断准确性:三名研究人员在 PubMed、CINHAL 和 Cochrane 数据库中搜索了使用内镜图像诊断幽门螺杆菌感染的人工智能算法与内镜组织病理学的比较研究。我们使用 QUADAS-2 工具评估了研究的方法学质量,并进行了荟萃分析,以估计人工智能检测幽门螺杆菌感染的集合灵敏度、特异性和准确性:结果:共发现 11 项研究符合我们的纳入标准。所有研究均在亚洲不同国家进行。我们的荟萃分析表明,人工智能在使用内窥镜图像检测幽门螺杆菌感染方面具有较高的灵敏度(0.93,95% 置信区间 [CI] 0.90-0.95)、特异性(0.92,95%CI 0.89-0.94)和准确性(0.92,95%CI 0.90-0.94)。然而,各研究之间也存在高度异质性(广义效应大小Tau2=0.87,I 2=76.10%;敏感性Tau2=1.53,I 2=80.72%;特异性Tau2=0.57,I 2=70.86%):这项系统回顾和荟萃分析表明,人工智能在利用内窥镜图像检测幽门螺杆菌感染方面具有很高的诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of artificial intelligence for the detection of Helicobacter pylori infection from upper gastrointestinal endoscopy images: an updated systematic review and meta-analysis.

Background: Helicobacter pylori (H. pylori) infection is associated with various gastrointestinal diseases and may lead to gastric cancer. Currently, endoscopy is the gold standard modality used for diagnosing H. pylori infection, but it lacks objective indicators and requires expert interpretation. In the past few years, the use of artificial intelligence (AI) for diagnosing gastrointestinal pathologies has increased tremendously and may improve the diagnostic accuracy of endoscopy for H. pylori infection. This study aimed to evaluate the diagnostic accuracy of AI algorithms for detecting H. pylori infection using endoscopic images.

Methods: Three investigators searched the PubMed, CINHAL and Cochrane databases for studies that compared AI algorithms with endoscopic histopathology for diagnosing H. pylori infection using endoscopic images. We assessed the methodological quality of studies using the QUADAS-2 tool and performed a meta-analysis to estimate the pooled sensitivity, specificity, and accuracy of AI for detecting H. pylori infection.

Results: A total of 11 studies were identified that met our inclusion criteria. All were conducted in different countries based in Asia. Our meta-analysis showed that AI had high sensitivity (0.93, 95% confidence interval [CI] 0.90-0.95), specificity (0.92, 95%CI 0.89-0.94), and accuracy (0.92, 95%CI 0.90-0.94) for detecting H. pylori infection using endoscopic images. However, there was also high heterogeneity among the studies (Tau2=0.87, I 2=76.10% for generalized effect size; Tau2=1.53, I 2=80.72% for sensitivity; Tau2=0.57, I 2=70.86% for specificity).

Conclusion: This systematic review and meta-analysis showed that AI had high diagnostic accuracy for detecting H. pylori infection using endoscopic images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Gastroenterology
Annals of Gastroenterology GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
4.30
自引率
0.00%
发文量
58
期刊最新文献
Authors' reply. Clinical features and outcomes of total pancreatic lipomatosis with chronic pancreatitis: a case series. Endoscopic management of ileal pouch-anal anastomosis strictures: meta-analysis and systematic literature review. Gastrointestinal cancer incidence after lung transplantation in sarcoidosis patients. Landscape of B lymphocytes and plasma cells in digestive tract carcinomas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1