利用基于成像特征的模型预测接受 CAR-T 疗法的 B 细胞淋巴瘤患者的生存期、神经毒性和反应。

IF 3.1 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING EJNMMI Research Pub Date : 2024-11-20 DOI:10.1186/s13550-024-01172-9
Blanca Ferrer-Lores, Alfonso Ortiz-Algarra, Alfonso Picó-Peris, Alejandra Estepa-Fernández, Fuensanta Bellvís-Bataller, Glen J Weiss, Almudena Fuster-Matanzo, Juan Pedro Fernández, Ana Jimenez-Pastor, Rafael Hernani, Ana Saus-Carreres, Ana Benzaquen, Laura Ventura, José Luis Piñana, Ana Belén Teruel, Alicia Serrano-Alcalá, Rosa Dosdá, Pablo Sopena-Novales, Aitana Balaguer-Rosello, Manuel Guerreiro, Jaime Sanz, Luis Martí-Bonmatí, María José Terol, Ángel Alberich-Bayarri
{"title":"利用基于成像特征的模型预测接受 CAR-T 疗法的 B 细胞淋巴瘤患者的生存期、神经毒性和反应。","authors":"Blanca Ferrer-Lores, Alfonso Ortiz-Algarra, Alfonso Picó-Peris, Alejandra Estepa-Fernández, Fuensanta Bellvís-Bataller, Glen J Weiss, Almudena Fuster-Matanzo, Juan Pedro Fernández, Ana Jimenez-Pastor, Rafael Hernani, Ana Saus-Carreres, Ana Benzaquen, Laura Ventura, José Luis Piñana, Ana Belén Teruel, Alicia Serrano-Alcalá, Rosa Dosdá, Pablo Sopena-Novales, Aitana Balaguer-Rosello, Manuel Guerreiro, Jaime Sanz, Luis Martí-Bonmatí, María José Terol, Ángel Alberich-Bayarri","doi":"10.1186/s13550-024-01172-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This multicentre retrospective observational study aims to develop imaging-based prognostic and predictive models for relapsed/refractory (R/R) B-cell lymphoma patients undergoing CAR-T therapy by integrating clinical data and imaging features. Specifically, our aim was to predict 3- and 6-month treatment response, overall survival (OS), progression-free survival (PFS), and the occurrence of the immune effector cell-associated neurotoxicity syndrome (ICANS).</p><p><strong>Results: </strong>Sixty-five patients of R/R B-cell lymphoma treated with CAR-T cells in two centres were included. Pre-infusion [<sup>18</sup>F]FDG PET/CT scans and clinical data were systematically collected, and imaging features, including kurtosis, entropy, maximum diameter, standardized uptake value (SUV) related features (SUV<sub>max</sub>, SUV<sub>mean</sub>, SUV<sub>std</sub>, SUV<sub>median</sub>, SUV<sub>p25</sub>, SUV<sub>p75</sub>), total metabolic tumour volume (MTV<sub>total</sub>), and total lesion glycolysis (TLG<sub>total</sub>), were extracted using the Quibim platform. The median age was 62 (range 21-76) years and the median follow-up for survivors was 10.47 (range 0.20-45.80) months. A logistic regression model accurately predicted neurotoxicity (AUC: 0.830), and Cox proportional-hazards models for CAR-T response at 3 and 6 months demonstrated high accuracy (AUC: 0.754 and 0.818, respectively). Median predicted OS after CAR-T therapy was 4.73 months for high MTV<sub>total</sub> and 37.55 months for low MTV<sub>total</sub>. Median predicted PFS was 2.73 months for high MTV<sub>total</sub> and 11.83 months for low MTV<sub>total</sub>. For all outcomes, predictive models, combining imaging features and clinical variables, showed improved accuracy compared to models using only clinical variables or imaging features alone.</p><p><strong>Conclusion: </strong>This study successfully integrates imaging features and clinical variables to predict outcomes in R/R B-cell lymphoma patients undergoing CAR-T. Notably, the identified MTV<sub>total</sub> cut-off effectively stratifies patients, as evidenced by significant differences in OS and PFS. Additionally, the predictive models for neurotoxicity and CAR-T response show promising accuracy. This comprehensive approach holds promise for risk stratification and personalized treatment strategies which may become a helpful tool for optimizing CAR-T outcomes in R/R lymphoma patients.</p>","PeriodicalId":11611,"journal":{"name":"EJNMMI Research","volume":"14 1","pages":"113"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579271/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting survival, neurotoxicity and response in B-cell lymphoma patients treated with CAR-T therapy using an imaging features-based model.\",\"authors\":\"Blanca Ferrer-Lores, Alfonso Ortiz-Algarra, Alfonso Picó-Peris, Alejandra Estepa-Fernández, Fuensanta Bellvís-Bataller, Glen J Weiss, Almudena Fuster-Matanzo, Juan Pedro Fernández, Ana Jimenez-Pastor, Rafael Hernani, Ana Saus-Carreres, Ana Benzaquen, Laura Ventura, José Luis Piñana, Ana Belén Teruel, Alicia Serrano-Alcalá, Rosa Dosdá, Pablo Sopena-Novales, Aitana Balaguer-Rosello, Manuel Guerreiro, Jaime Sanz, Luis Martí-Bonmatí, María José Terol, Ángel Alberich-Bayarri\",\"doi\":\"10.1186/s13550-024-01172-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This multicentre retrospective observational study aims to develop imaging-based prognostic and predictive models for relapsed/refractory (R/R) B-cell lymphoma patients undergoing CAR-T therapy by integrating clinical data and imaging features. Specifically, our aim was to predict 3- and 6-month treatment response, overall survival (OS), progression-free survival (PFS), and the occurrence of the immune effector cell-associated neurotoxicity syndrome (ICANS).</p><p><strong>Results: </strong>Sixty-five patients of R/R B-cell lymphoma treated with CAR-T cells in two centres were included. Pre-infusion [<sup>18</sup>F]FDG PET/CT scans and clinical data were systematically collected, and imaging features, including kurtosis, entropy, maximum diameter, standardized uptake value (SUV) related features (SUV<sub>max</sub>, SUV<sub>mean</sub>, SUV<sub>std</sub>, SUV<sub>median</sub>, SUV<sub>p25</sub>, SUV<sub>p75</sub>), total metabolic tumour volume (MTV<sub>total</sub>), and total lesion glycolysis (TLG<sub>total</sub>), were extracted using the Quibim platform. The median age was 62 (range 21-76) years and the median follow-up for survivors was 10.47 (range 0.20-45.80) months. A logistic regression model accurately predicted neurotoxicity (AUC: 0.830), and Cox proportional-hazards models for CAR-T response at 3 and 6 months demonstrated high accuracy (AUC: 0.754 and 0.818, respectively). Median predicted OS after CAR-T therapy was 4.73 months for high MTV<sub>total</sub> and 37.55 months for low MTV<sub>total</sub>. Median predicted PFS was 2.73 months for high MTV<sub>total</sub> and 11.83 months for low MTV<sub>total</sub>. For all outcomes, predictive models, combining imaging features and clinical variables, showed improved accuracy compared to models using only clinical variables or imaging features alone.</p><p><strong>Conclusion: </strong>This study successfully integrates imaging features and clinical variables to predict outcomes in R/R B-cell lymphoma patients undergoing CAR-T. Notably, the identified MTV<sub>total</sub> cut-off effectively stratifies patients, as evidenced by significant differences in OS and PFS. Additionally, the predictive models for neurotoxicity and CAR-T response show promising accuracy. This comprehensive approach holds promise for risk stratification and personalized treatment strategies which may become a helpful tool for optimizing CAR-T outcomes in R/R lymphoma patients.</p>\",\"PeriodicalId\":11611,\"journal\":{\"name\":\"EJNMMI Research\",\"volume\":\"14 1\",\"pages\":\"113\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579271/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13550-024-01172-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13550-024-01172-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

研究背景这项多中心回顾性观察研究旨在通过整合临床数据和影像特征,为接受CAR-T疗法的复发/难治(R/R)B细胞淋巴瘤患者建立基于影像的预后和预测模型。具体来说,我们的目的是预测3个月和6个月的治疗反应、总生存期(OS)、无进展生存期(PFS)以及免疫效应细胞相关神经毒性综合征(ICANS)的发生:结果:纳入了在两个中心接受CAR-T细胞治疗的65例R/R B细胞淋巴瘤患者。系统收集了灌注前[18F]FDG PET/CT扫描和临床数据,并使用Quibim平台提取了包括峰度、熵、最大直径、标准化摄取值(SUV)相关特征(SUVmax、SUVmean、SUVstd、SUVmedian、SUVp25、SUVp75)、总代谢肿瘤体积(MTVtotal)和总病变糖酵解(TLGtotal)在内的成像特征。中位年龄为 62 岁(21-76 岁),幸存者的中位随访时间为 10.47 个月(0.20-45.80 个月)。逻辑回归模型能准确预测神经毒性(AUC:0.830),Cox比例危险模型对3个月和6个月的CAR-T反应显示出很高的准确性(AUC:分别为0.754和0.818)。高 MTVtotal 的 CAR-T 治疗后预测 OS 中位数为 4.73 个月,低 MTVtotal 为 37.55 个月。高 MTVtotal 的预测 PFS 中位数为 2.73 个月,低 MTVtotal 为 11.83 个月。就所有结果而言,与仅使用临床变量或成像特征的模型相比,结合成像特征和临床变量的预测模型显示出更高的准确性:这项研究成功地整合了影像学特征和临床变量来预测接受CAR-T治疗的R/R B细胞淋巴瘤患者的预后。值得注意的是,所确定的 MTVtotal 临界值能有效地对患者进行分层,OS 和 PFS 的显著差异就证明了这一点。此外,神经毒性和CAR-T反应的预测模型也显示出良好的准确性。这种综合方法有望用于风险分层和个性化治疗策略,可能成为优化R/R淋巴瘤患者CAR-T疗效的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting survival, neurotoxicity and response in B-cell lymphoma patients treated with CAR-T therapy using an imaging features-based model.

Background: This multicentre retrospective observational study aims to develop imaging-based prognostic and predictive models for relapsed/refractory (R/R) B-cell lymphoma patients undergoing CAR-T therapy by integrating clinical data and imaging features. Specifically, our aim was to predict 3- and 6-month treatment response, overall survival (OS), progression-free survival (PFS), and the occurrence of the immune effector cell-associated neurotoxicity syndrome (ICANS).

Results: Sixty-five patients of R/R B-cell lymphoma treated with CAR-T cells in two centres were included. Pre-infusion [18F]FDG PET/CT scans and clinical data were systematically collected, and imaging features, including kurtosis, entropy, maximum diameter, standardized uptake value (SUV) related features (SUVmax, SUVmean, SUVstd, SUVmedian, SUVp25, SUVp75), total metabolic tumour volume (MTVtotal), and total lesion glycolysis (TLGtotal), were extracted using the Quibim platform. The median age was 62 (range 21-76) years and the median follow-up for survivors was 10.47 (range 0.20-45.80) months. A logistic regression model accurately predicted neurotoxicity (AUC: 0.830), and Cox proportional-hazards models for CAR-T response at 3 and 6 months demonstrated high accuracy (AUC: 0.754 and 0.818, respectively). Median predicted OS after CAR-T therapy was 4.73 months for high MTVtotal and 37.55 months for low MTVtotal. Median predicted PFS was 2.73 months for high MTVtotal and 11.83 months for low MTVtotal. For all outcomes, predictive models, combining imaging features and clinical variables, showed improved accuracy compared to models using only clinical variables or imaging features alone.

Conclusion: This study successfully integrates imaging features and clinical variables to predict outcomes in R/R B-cell lymphoma patients undergoing CAR-T. Notably, the identified MTVtotal cut-off effectively stratifies patients, as evidenced by significant differences in OS and PFS. Additionally, the predictive models for neurotoxicity and CAR-T response show promising accuracy. This comprehensive approach holds promise for risk stratification and personalized treatment strategies which may become a helpful tool for optimizing CAR-T outcomes in R/R lymphoma patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EJNMMI Research
EJNMMI Research RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING&nb-
CiteScore
5.90
自引率
3.10%
发文量
72
审稿时长
13 weeks
期刊介绍: EJNMMI Research publishes new basic, translational and clinical research in the field of nuclear medicine and molecular imaging. Regular features include original research articles, rapid communication of preliminary data on innovative research, interesting case reports, editorials, and letters to the editor. Educational articles on basic sciences, fundamental aspects and controversy related to pre-clinical and clinical research or ethical aspects of research are also welcome. Timely reviews provide updates on current applications, issues in imaging research and translational aspects of nuclear medicine and molecular imaging technologies. The main emphasis is placed on the development of targeted imaging with radiopharmaceuticals within the broader context of molecular probes to enhance understanding and characterisation of the complex biological processes underlying disease and to develop, test and guide new treatment modalities, including radionuclide therapy.
期刊最新文献
In vitro and ex vivo evaluation of preclinical models for FAP-targeted theranostics: differences and relevance for radiotracer evaluation. cfDNA fragmentation patterns correlate with tumor burden measured via PSMA PET/CT volumetric parameters in patients with biochemical recurrence of prostate cancer. P2X 7-receptor binding in new-onset and secondary progressive MS - a [11C]SMW139 PET study. PET imaging of GABAA receptors in pancreatic islets by [11C]flumazenil. Imaging tumor and ascites-associated macrophages in a mouse model of metastatic ovarian cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1