肺癌的突破性生物标志物:开创早期检测和精准治疗策略。

Ruchi Tiwari
{"title":"肺癌的突破性生物标志物:开创早期检测和精准治疗策略。","authors":"Ruchi Tiwari","doi":"10.62958/j.cjap.2024.034","DOIUrl":null,"url":null,"abstract":"<p><p>There are several biological, genetic, and environmental variables that contribute to lung cancer, which is one of the main causes of cancer-related death globally. In addition to exposure to radon gas, air pollution, and occupational dangers like asbestos, smoking is a major risk factor because it releases carcinogens like nitrosamines and polycyclic aromatic hydrocarbons (PAHs) into the lungs. The risk of developing lung cancer is also influenced by genetic predispositions, such as variations in genes like EGFR, KRAS, and TP53. Additionally, new research emphasises how epigenetic changes, such as DNA methylation and histone acetylation, affect the expression of genes connected to the development of cancer. In determining risk and spotting early indicators of lung cancer, biomarkers have become important instruments. Cell-free DNA (cfDNA), circulating tumour cells (CTCs), and certain microRNAs (miRNAs) in blood are non-invasive biomarkers that indicate tumour heterogeneity and load. Molecular indicators include anaplastic lymphoma kinase (ALK) rearrangements, epidermal growth factor receptor (EGFR) mutations, and programmed death-ligand 1 (PD-L1) expression have proved very important in tailoring the therapy of lung cancer. Inflammatory indicators such as interleukins and C-reactive protein (CRP) are also linked to the prognosis of lung cancer. Finding and confirming these biomarkers is essential for improving early detection, tracking the course of the disease, and directing focused treatments. As research progresses, combining molecular, genetic, and environmental insights might improve lung cancer care, prevention, and early diagnosis, thereby lowering the disease's worldwide burden.</p>","PeriodicalId":23985,"journal":{"name":"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology","volume":"40 ","pages":"e20240034"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breakthrough Biomarkers in Lung Cancer: Pioneering Early Detection and Precision Treatment Strategies.\",\"authors\":\"Ruchi Tiwari\",\"doi\":\"10.62958/j.cjap.2024.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are several biological, genetic, and environmental variables that contribute to lung cancer, which is one of the main causes of cancer-related death globally. In addition to exposure to radon gas, air pollution, and occupational dangers like asbestos, smoking is a major risk factor because it releases carcinogens like nitrosamines and polycyclic aromatic hydrocarbons (PAHs) into the lungs. The risk of developing lung cancer is also influenced by genetic predispositions, such as variations in genes like EGFR, KRAS, and TP53. Additionally, new research emphasises how epigenetic changes, such as DNA methylation and histone acetylation, affect the expression of genes connected to the development of cancer. In determining risk and spotting early indicators of lung cancer, biomarkers have become important instruments. Cell-free DNA (cfDNA), circulating tumour cells (CTCs), and certain microRNAs (miRNAs) in blood are non-invasive biomarkers that indicate tumour heterogeneity and load. Molecular indicators include anaplastic lymphoma kinase (ALK) rearrangements, epidermal growth factor receptor (EGFR) mutations, and programmed death-ligand 1 (PD-L1) expression have proved very important in tailoring the therapy of lung cancer. Inflammatory indicators such as interleukins and C-reactive protein (CRP) are also linked to the prognosis of lung cancer. Finding and confirming these biomarkers is essential for improving early detection, tracking the course of the disease, and directing focused treatments. As research progresses, combining molecular, genetic, and environmental insights might improve lung cancer care, prevention, and early diagnosis, thereby lowering the disease's worldwide burden.</p>\",\"PeriodicalId\":23985,\"journal\":{\"name\":\"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology\",\"volume\":\"40 \",\"pages\":\"e20240034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62958/j.cjap.2024.034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62958/j.cjap.2024.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

肺癌是全球癌症相关死亡的主要原因之一,有多种生物、遗传和环境变量可导致肺癌。除了暴露于氡气、空气污染和石棉等职业危险之外,吸烟也是一个主要的风险因素,因为吸烟会向肺部释放亚硝胺和多环芳烃等致癌物质。罹患肺癌的风险还受到遗传倾向的影响,如表皮生长因子受体、KRAS 和 TP53 等基因的变异。此外,新的研究还强调了表观遗传变化(如 DNA 甲基化和组蛋白乙酰化)如何影响与癌症发展相关的基因表达。在确定肺癌风险和发现肺癌早期指标方面,生物标志物已成为重要工具。血液中的无细胞DNA(cfDNA)、循环肿瘤细胞(CTCs)和某些微RNAs(miRNAs)是非侵入性生物标志物,可显示肿瘤的异质性和负荷。分子指标包括无性淋巴瘤激酶(ALK)重排、表皮生长因子受体(EGFR)突变和程序性死亡配体 1(PD-L1)表达,这些指标已被证明对肺癌的定制治疗非常重要。白细胞介素和C反应蛋白(CRP)等炎症指标也与肺癌的预后有关。找到并确认这些生物标志物对于改善早期检测、跟踪病程和指导有针对性的治疗至关重要。随着研究的不断深入,将分子、遗传和环境方面的知识结合起来,可能会改善肺癌的护理、预防和早期诊断,从而降低该疾病给全世界带来的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breakthrough Biomarkers in Lung Cancer: Pioneering Early Detection and Precision Treatment Strategies.

There are several biological, genetic, and environmental variables that contribute to lung cancer, which is one of the main causes of cancer-related death globally. In addition to exposure to radon gas, air pollution, and occupational dangers like asbestos, smoking is a major risk factor because it releases carcinogens like nitrosamines and polycyclic aromatic hydrocarbons (PAHs) into the lungs. The risk of developing lung cancer is also influenced by genetic predispositions, such as variations in genes like EGFR, KRAS, and TP53. Additionally, new research emphasises how epigenetic changes, such as DNA methylation and histone acetylation, affect the expression of genes connected to the development of cancer. In determining risk and spotting early indicators of lung cancer, biomarkers have become important instruments. Cell-free DNA (cfDNA), circulating tumour cells (CTCs), and certain microRNAs (miRNAs) in blood are non-invasive biomarkers that indicate tumour heterogeneity and load. Molecular indicators include anaplastic lymphoma kinase (ALK) rearrangements, epidermal growth factor receptor (EGFR) mutations, and programmed death-ligand 1 (PD-L1) expression have proved very important in tailoring the therapy of lung cancer. Inflammatory indicators such as interleukins and C-reactive protein (CRP) are also linked to the prognosis of lung cancer. Finding and confirming these biomarkers is essential for improving early detection, tracking the course of the disease, and directing focused treatments. As research progresses, combining molecular, genetic, and environmental insights might improve lung cancer care, prevention, and early diagnosis, thereby lowering the disease's worldwide burden.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
53
期刊最新文献
Innovations in Drug Delivery Systems for Biologics: Enhancing Stability and Targeted Delivery for Next-Generation Therapeutics. Harnessing Pharmacogenomics for Personalized Medicine: Tailoring Drug Therapy to Genetic Profiles. Breakthrough Biomarkers in Lung Cancer: Pioneering Early Detection and Precision Treatment Strategies. Exploring Computational Advancements in ADME: Essential Insights for Drug Disposition. Oncogenetics: Unraveling the Genetic Underpinnings of Cancer for Improved Immunotherapeutic Outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1