研究脊髓发育和疾病的神经肌肉器官模型

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-11-22 DOI:10.1007/7651_2024_574
Tobias Grass, Zeynep Dokuzluoglu, Natalia Rodríguez-Muela
{"title":"研究脊髓发育和疾病的神经肌肉器官模型","authors":"Tobias Grass, Zeynep Dokuzluoglu, Natalia Rodríguez-Muela","doi":"10.1007/7651_2024_574","DOIUrl":null,"url":null,"abstract":"<p><p>Many aspects of neurodegenerative disease pathology remain unresolved. Why do certain neuronal subpopulations acquire vulnerability to stress or mutations in ubiquitously expressed genes, while others remain resilient? Do these neurons harbor intrinsic marks that make them prone to degeneration? Do these diseases have a neurodevelopmental component? Lacking this fundamental knowledge hampers the discovery of efficacious treatments. While it is well established that human organoids enable the modeling of brain-related diseases, we still lack an organoid model that recapitulates the regionalization complexity and physiology of the spinal cord. Here, we describe an advanced experimental protocol to generate neuromuscular organoids composed of a wide rostro-caudal (RC) diversity of spinal motor neurons (spMNs) and mesodermal progenitor-derived muscle cells. This model therefore allows for the robust and reproducible study of neuromuscular unit development and disease.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromuscular Organoids to Study Spinal Cord Development and Disease.\",\"authors\":\"Tobias Grass, Zeynep Dokuzluoglu, Natalia Rodríguez-Muela\",\"doi\":\"10.1007/7651_2024_574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many aspects of neurodegenerative disease pathology remain unresolved. Why do certain neuronal subpopulations acquire vulnerability to stress or mutations in ubiquitously expressed genes, while others remain resilient? Do these neurons harbor intrinsic marks that make them prone to degeneration? Do these diseases have a neurodevelopmental component? Lacking this fundamental knowledge hampers the discovery of efficacious treatments. While it is well established that human organoids enable the modeling of brain-related diseases, we still lack an organoid model that recapitulates the regionalization complexity and physiology of the spinal cord. Here, we describe an advanced experimental protocol to generate neuromuscular organoids composed of a wide rostro-caudal (RC) diversity of spinal motor neurons (spMNs) and mesodermal progenitor-derived muscle cells. This model therefore allows for the robust and reproducible study of neuromuscular unit development and disease.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病病理学的许多方面仍未解决。为什么某些神经元亚群容易受到压力或普遍表达基因突变的影响,而另一些神经元亚群却仍有生命力?这些神经元是否蕴藏着使其容易发生变性的内在标记?这些疾病是否与神经发育有关?缺乏这些基础知识阻碍了有效治疗方法的发现。虽然人类类器官模型可用于大脑相关疾病的建模已得到公认,但我们仍然缺乏一种能再现脊髓区域化复杂性和生理学的类器官模型。在这里,我们描述了一种先进的实验方案,它能生成由脊髓运动神经元(spMNs)和中胚层祖细胞衍生的肌肉细胞组成的神经肌肉类器官。因此,该模型可对神经肌肉单位的发育和疾病进行稳健且可重复的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuromuscular Organoids to Study Spinal Cord Development and Disease.

Many aspects of neurodegenerative disease pathology remain unresolved. Why do certain neuronal subpopulations acquire vulnerability to stress or mutations in ubiquitously expressed genes, while others remain resilient? Do these neurons harbor intrinsic marks that make them prone to degeneration? Do these diseases have a neurodevelopmental component? Lacking this fundamental knowledge hampers the discovery of efficacious treatments. While it is well established that human organoids enable the modeling of brain-related diseases, we still lack an organoid model that recapitulates the regionalization complexity and physiology of the spinal cord. Here, we describe an advanced experimental protocol to generate neuromuscular organoids composed of a wide rostro-caudal (RC) diversity of spinal motor neurons (spMNs) and mesodermal progenitor-derived muscle cells. This model therefore allows for the robust and reproducible study of neuromuscular unit development and disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. A Guideline Strategy for Identifying Genes/Proteins Regulating Antiviral Innate Immunity. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Click Chemistry in Detecting Protein Modification. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1