利用物理约束频谱空间先验对高度加速化学交换饱和转移磁共振成像进行非线性参数估计。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-11-20 DOI:10.1088/1361-6560/ad9540
Chinh Dinh Nguyen, HyungGoo R Kim, Roh Eul Yoo, Seung Hong Choi, Jaeseok Park
{"title":"利用物理约束频谱空间先验对高度加速化学交换饱和转移磁共振成像进行非线性参数估计。","authors":"Chinh Dinh Nguyen, HyungGoo R Kim, Roh Eul Yoo, Seung Hong Choi, Jaeseok Park","doi":"10.1088/1361-6560/ad9540","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a nonlinear, model-based parameter estimation method directly from incomplete measurements in k-w space for robust spectral analysis in highly accelerated chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI).</p><p><strong>Approach: </strong>A CEST-specific, separable nonlinear model, which describes spectral decomposition using multi-pool Lorentzian functions (conventional magnetization transfer (MT), direct saturation&#xD;of water signals (DS), amide, amine, and nuclear Overhauser effect (NOE)) derived from the steady-state Bloch McConnel equation, is incorporated into a measurement model in CEST MRI. Furthermore, signal drop in saturation transfer experiments is formulated by an additional, separable nonlinear spectral prior indicating that the symmetric z-spectra synthesized using conventional MT and DS always remain higher or equal to the whole z-spectra with all pools. Given the above considerations, linear and nonlinear parameters in the proposed method are estimated in an alternating fashion directly from highly incomplete measurements in k-w space by solving a constrained optimization problem with the physics-constrained&#xD;spectral priors while imposing additional sparsity priors on spatial parameter maps. Main&#xD;results. Compared with conventional methods, the proposed method yields clearer delineation of tumor-specific CEST maps without apparent artifact and noise.</p><p><strong>Significant: </strong>We successfully demonstrated the feasibility of the proposed method for CEST MRI with highly&#xD;incomplete measurements thus enabling high-resolution whole brain CEST MRI in clinically reasonable imaging time.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear parameter estimation with physics-constrained spectral-spatial priors for highly accelerated chemical exchange saturation transfer MRI.\",\"authors\":\"Chinh Dinh Nguyen, HyungGoo R Kim, Roh Eul Yoo, Seung Hong Choi, Jaeseok Park\",\"doi\":\"10.1088/1361-6560/ad9540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop a nonlinear, model-based parameter estimation method directly from incomplete measurements in k-w space for robust spectral analysis in highly accelerated chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI).</p><p><strong>Approach: </strong>A CEST-specific, separable nonlinear model, which describes spectral decomposition using multi-pool Lorentzian functions (conventional magnetization transfer (MT), direct saturation&#xD;of water signals (DS), amide, amine, and nuclear Overhauser effect (NOE)) derived from the steady-state Bloch McConnel equation, is incorporated into a measurement model in CEST MRI. Furthermore, signal drop in saturation transfer experiments is formulated by an additional, separable nonlinear spectral prior indicating that the symmetric z-spectra synthesized using conventional MT and DS always remain higher or equal to the whole z-spectra with all pools. Given the above considerations, linear and nonlinear parameters in the proposed method are estimated in an alternating fashion directly from highly incomplete measurements in k-w space by solving a constrained optimization problem with the physics-constrained&#xD;spectral priors while imposing additional sparsity priors on spatial parameter maps. Main&#xD;results. Compared with conventional methods, the proposed method yields clearer delineation of tumor-specific CEST maps without apparent artifact and noise.</p><p><strong>Significant: </strong>We successfully demonstrated the feasibility of the proposed method for CEST MRI with highly&#xD;incomplete measurements thus enabling high-resolution whole brain CEST MRI in clinically reasonable imaging time.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ad9540\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad9540","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目标:在高度加速的化学交换饱和转移(CEST)磁共振成像(MRI)中,开发一种基于模型的非线性参数估计方法,直接从 k-w 空间的不完整测量结果进行稳健的光谱分析:方法:从稳态布洛赫-麦康纳方程导出的 CEST 特定可分离非线性模型,利用多池洛伦兹函数(传统磁化传递 (MT)、水信号直接饱和 (DS)、酰胺、胺和核奥弗霍塞尔效应 (NOE))描述光谱分解,并将其纳入 CEST MRI 的测量模型。此外,饱和转移实验中的信号下降是由一个额外的、可分离的非线性光谱先验值决定的,表明使用传统 MT 和 DS 合成的对称 Z 光谱始终高于或等于所有池的整体 Z 光谱。鉴于上述考虑,拟议方法中的线性和非线性参数是直接从 k-w 空间的高度不完整测量中交替估算出来的,方法是利用物理约束的 谱先验解约束优化问题,同时对空间参数图施加额外的稀疏性先验。主要 结果。与传统方法相比,所提出的方法能更清晰地划分肿瘤特异性 CEST 图,且无明显伪影和噪声:我们成功证明了所提出的方法在高度 不完整测量的 CEST MRI 上的可行性,从而在临床上合理的成像时间内实现了高分辨率全脑 CEST MRI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear parameter estimation with physics-constrained spectral-spatial priors for highly accelerated chemical exchange saturation transfer MRI.

Objective: To develop a nonlinear, model-based parameter estimation method directly from incomplete measurements in k-w space for robust spectral analysis in highly accelerated chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI).

Approach: A CEST-specific, separable nonlinear model, which describes spectral decomposition using multi-pool Lorentzian functions (conventional magnetization transfer (MT), direct saturation of water signals (DS), amide, amine, and nuclear Overhauser effect (NOE)) derived from the steady-state Bloch McConnel equation, is incorporated into a measurement model in CEST MRI. Furthermore, signal drop in saturation transfer experiments is formulated by an additional, separable nonlinear spectral prior indicating that the symmetric z-spectra synthesized using conventional MT and DS always remain higher or equal to the whole z-spectra with all pools. Given the above considerations, linear and nonlinear parameters in the proposed method are estimated in an alternating fashion directly from highly incomplete measurements in k-w space by solving a constrained optimization problem with the physics-constrained spectral priors while imposing additional sparsity priors on spatial parameter maps. Main results. Compared with conventional methods, the proposed method yields clearer delineation of tumor-specific CEST maps without apparent artifact and noise.

Significant: We successfully demonstrated the feasibility of the proposed method for CEST MRI with highly incomplete measurements thus enabling high-resolution whole brain CEST MRI in clinically reasonable imaging time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Automated planning of curved needle channels in 3D printed patient-tailored applicators for cervical cancer brachytherapy. Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study. Novel frequency selective B1focusing passive Lenz resonators for substantial MRI signal-to-noise ratio amplification. On the microdosimetric characterisation of the radiation quality of a carbon-ion beam and the effect of the target volume thickness. Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1