Mario T Peiris, Yu Chen, Geoffrey Shaw, Marilyn B Renfree
{"title":"达玛小袋鼠的早期卵巢分化及暴露于双酚 A 的影响。","authors":"Mario T Peiris, Yu Chen, Geoffrey Shaw, Marilyn B Renfree","doi":"10.1530/REP-24-0259","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol-A (BPA), an environmental endocrine disruptor (EED), is used widely in the manufacturing of various plastics. While BPA can have detrimental effects on fertility and reproductive health, the effects of BPA on early ovarian differentiation in mammals remains unclear. Marsupials have undifferentiated gonads at birth, so this study investigated the gross morphology, protein localisation of FOXL2 and FST and the expression profile of key ovarian differentiating genes FOXL2, WNT4,FST, ESR1 and ESR2 every 2 days from the day of birth to day 10 post partum (pp) in the marsupial tammar wallaby. A second group of newborn female pouch young were treated with 50 µg/kg of BPA daily from day 0-10 pp and the morphology and gene expression were examined at day 10 pp. Ovigerous cords in tammar ovaries were first formed between days 2 to 4 pp. FOXL2 localisation became nuclear by day 4 in pre-granulosa cells. FST was initially in the cytoplasm of pre-granulosa cells at day 2 pp, but was then secreted into the extracellular matrix in ovaries by day 10 pp. FOXL2, FST, ESR1 and ESR2 mRNA were upregulated in ovaries around day 2-4 pp, indicating that ovarian differentiation in the tammar begins from day 2-4 pp. Interestingly, BPA treatment from day 0-10 pp blocked the morphological differentiation of the cortex and medulla as well as ovigerous cord formation and downregulated the expression of FST and FOXL2 at day 10 pp.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early ovarian differentiation in the tammar wallaby and the effects of exposure to bisphenol-A.\",\"authors\":\"Mario T Peiris, Yu Chen, Geoffrey Shaw, Marilyn B Renfree\",\"doi\":\"10.1530/REP-24-0259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bisphenol-A (BPA), an environmental endocrine disruptor (EED), is used widely in the manufacturing of various plastics. While BPA can have detrimental effects on fertility and reproductive health, the effects of BPA on early ovarian differentiation in mammals remains unclear. Marsupials have undifferentiated gonads at birth, so this study investigated the gross morphology, protein localisation of FOXL2 and FST and the expression profile of key ovarian differentiating genes FOXL2, WNT4,FST, ESR1 and ESR2 every 2 days from the day of birth to day 10 post partum (pp) in the marsupial tammar wallaby. A second group of newborn female pouch young were treated with 50 µg/kg of BPA daily from day 0-10 pp and the morphology and gene expression were examined at day 10 pp. Ovigerous cords in tammar ovaries were first formed between days 2 to 4 pp. FOXL2 localisation became nuclear by day 4 in pre-granulosa cells. FST was initially in the cytoplasm of pre-granulosa cells at day 2 pp, but was then secreted into the extracellular matrix in ovaries by day 10 pp. FOXL2, FST, ESR1 and ESR2 mRNA were upregulated in ovaries around day 2-4 pp, indicating that ovarian differentiation in the tammar begins from day 2-4 pp. Interestingly, BPA treatment from day 0-10 pp blocked the morphological differentiation of the cortex and medulla as well as ovigerous cord formation and downregulated the expression of FST and FOXL2 at day 10 pp.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0259\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0259","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Early ovarian differentiation in the tammar wallaby and the effects of exposure to bisphenol-A.
Bisphenol-A (BPA), an environmental endocrine disruptor (EED), is used widely in the manufacturing of various plastics. While BPA can have detrimental effects on fertility and reproductive health, the effects of BPA on early ovarian differentiation in mammals remains unclear. Marsupials have undifferentiated gonads at birth, so this study investigated the gross morphology, protein localisation of FOXL2 and FST and the expression profile of key ovarian differentiating genes FOXL2, WNT4,FST, ESR1 and ESR2 every 2 days from the day of birth to day 10 post partum (pp) in the marsupial tammar wallaby. A second group of newborn female pouch young were treated with 50 µg/kg of BPA daily from day 0-10 pp and the morphology and gene expression were examined at day 10 pp. Ovigerous cords in tammar ovaries were first formed between days 2 to 4 pp. FOXL2 localisation became nuclear by day 4 in pre-granulosa cells. FST was initially in the cytoplasm of pre-granulosa cells at day 2 pp, but was then secreted into the extracellular matrix in ovaries by day 10 pp. FOXL2, FST, ESR1 and ESR2 mRNA were upregulated in ovaries around day 2-4 pp, indicating that ovarian differentiation in the tammar begins from day 2-4 pp. Interestingly, BPA treatment from day 0-10 pp blocked the morphological differentiation of the cortex and medulla as well as ovigerous cord formation and downregulated the expression of FST and FOXL2 at day 10 pp.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.