Thao Linh Tran , Roslyn Prinsley , Daniel Rosenfeld , Helen Cleugh , Jiwen Fan
{"title":"我们能否利用气溶胶缓解热带气旋的形成?作为理论基础的气旋生成和气溶胶效应综述","authors":"Thao Linh Tran , Roslyn Prinsley , Daniel Rosenfeld , Helen Cleugh , Jiwen Fan","doi":"10.1016/j.atmosres.2024.107779","DOIUrl":null,"url":null,"abstract":"<div><div>Tropical cyclogenesis is a complex phenomenon, involving processes across multiple scales, with various theories proposed to explain its mechanisms. This paper provides an up-to-date summary of the established physical mechanisms and controlling factors of cyclogenesis. Understanding the nature of tropical cyclone formation is necessary to improve tropical cyclone forecasts and inform tropical cyclone mitigation strategies targeting early-stage intervention. Despite the disparities among theories, the critical role of persistent, intensified convection in tropical cyclone initiation is universally acknowledged. Therefore, our hypothesis is that interrupting convective development using aerosol injection is a potential strategy for mitigating tropical cyclone formation. Targetted injection of coarse and fine aerosols at the formation stage are two proposed potential approaches for mitigating tropical cyclones. These methods have completely different microphysical effects but each may ultimately interfere with the formation of the nascent cyclone. These potential interventions open new areas of further research, which are important and necessary to establish a solid scientific foundation for cyclogenesis mitigation.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"314 ","pages":"Article 107779"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can we mitigate tropical cyclone formation using aerosols? A review of cyclogenesis and aerosol effects as a theoretical basis\",\"authors\":\"Thao Linh Tran , Roslyn Prinsley , Daniel Rosenfeld , Helen Cleugh , Jiwen Fan\",\"doi\":\"10.1016/j.atmosres.2024.107779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tropical cyclogenesis is a complex phenomenon, involving processes across multiple scales, with various theories proposed to explain its mechanisms. This paper provides an up-to-date summary of the established physical mechanisms and controlling factors of cyclogenesis. Understanding the nature of tropical cyclone formation is necessary to improve tropical cyclone forecasts and inform tropical cyclone mitigation strategies targeting early-stage intervention. Despite the disparities among theories, the critical role of persistent, intensified convection in tropical cyclone initiation is universally acknowledged. Therefore, our hypothesis is that interrupting convective development using aerosol injection is a potential strategy for mitigating tropical cyclone formation. Targetted injection of coarse and fine aerosols at the formation stage are two proposed potential approaches for mitigating tropical cyclones. These methods have completely different microphysical effects but each may ultimately interfere with the formation of the nascent cyclone. These potential interventions open new areas of further research, which are important and necessary to establish a solid scientific foundation for cyclogenesis mitigation.</div></div>\",\"PeriodicalId\":8600,\"journal\":{\"name\":\"Atmospheric Research\",\"volume\":\"314 \",\"pages\":\"Article 107779\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169809524005611\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524005611","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Can we mitigate tropical cyclone formation using aerosols? A review of cyclogenesis and aerosol effects as a theoretical basis
Tropical cyclogenesis is a complex phenomenon, involving processes across multiple scales, with various theories proposed to explain its mechanisms. This paper provides an up-to-date summary of the established physical mechanisms and controlling factors of cyclogenesis. Understanding the nature of tropical cyclone formation is necessary to improve tropical cyclone forecasts and inform tropical cyclone mitigation strategies targeting early-stage intervention. Despite the disparities among theories, the critical role of persistent, intensified convection in tropical cyclone initiation is universally acknowledged. Therefore, our hypothesis is that interrupting convective development using aerosol injection is a potential strategy for mitigating tropical cyclone formation. Targetted injection of coarse and fine aerosols at the formation stage are two proposed potential approaches for mitigating tropical cyclones. These methods have completely different microphysical effects but each may ultimately interfere with the formation of the nascent cyclone. These potential interventions open new areas of further research, which are important and necessary to establish a solid scientific foundation for cyclogenesis mitigation.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.