拥有组蛋白的杆菌的染色质景观

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Genome research Pub Date : 2024-11-21 DOI:10.1101/gr.279418.124
Georgi K. Marinov, Benjamin Doughty, Anshul Kundaje, William J Greenleaf
{"title":"拥有组蛋白的杆菌的染色质景观","authors":"Georgi K. Marinov, Benjamin Doughty, Anshul Kundaje, William J Greenleaf","doi":"10.1101/gr.279418.124","DOIUrl":null,"url":null,"abstract":"Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a <em>Bacteriovorax</em> strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, <em>Bacteriovorax</em> chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in <em>Bacteriovorax</em> positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, <em>Bacteriovorax</em> promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the <em>Bacteriovorax</em> genome exists in a three-dimensional (3D) configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"61 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chromatin landscape of the histone-possessing Bacteriovorax bacteria\",\"authors\":\"Georgi K. Marinov, Benjamin Doughty, Anshul Kundaje, William J Greenleaf\",\"doi\":\"10.1101/gr.279418.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a <em>Bacteriovorax</em> strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, <em>Bacteriovorax</em> chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in <em>Bacteriovorax</em> positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, <em>Bacteriovorax</em> promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the <em>Bacteriovorax</em> genome exists in a three-dimensional (3D) configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279418.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279418.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

组蛋白传统上被认为仅限于真核生物和大多数古细菌,真核生物的核糖体组蛋白来源于它们的古细菌祖先。相比之下,细菌通常缺乏组蛋白。不过,最近在几个细菌支系中发现了组蛋白,其中最著名的是Bdellovibrionota菌门,这些组蛋白与古细菌和真核生物中的组蛋白相比表现出一系列不同的特征。然而,目前还没有对Bdellovibrionota染色质的特性进行功能基因组研究。在这项工作中,我们绘制了 Bdellovibrionota 的一个成员(Bacteriovorax 菌株)的染色质可及性、活性转录和三维基因组组织图谱。我们发现,与在一些古生菌和基因组紧凑的真核生物(如酵母)中观察到的情况类似,Bacteriovorax 染色质的特点是启动子区域周围的可及性优先。与真核生物类似,细菌染色质的可及性与基因表达呈正相关。通过单链DNA(ssDNA)分析绘制活性转录图显示,与酵母不同,但与哺乳动物和苍蝇启动子的状态相似,杆菌启动子表现出非常强的聚合酶暂停。最后,与其他不含组蛋白的细菌类似,Bacteriovorax 基因组也是由 parABS 系统沿复制起源和终止区所确定的轴线组织的三维(3D)结构。这些结果为了解独特的 Bdellovibrionota 细菌的染色质生物学以及整个生命树染色质组织的功能多样性奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The chromatin landscape of the histone-possessing Bacteriovorax bacteria
Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a Bacteriovorax strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, Bacteriovorax chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in Bacteriovorax positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, Bacteriovorax promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the Bacteriovorax genome exists in a three-dimensional (3D) configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome research
Genome research 生物-生化与分子生物学
CiteScore
12.40
自引率
1.40%
发文量
140
审稿时长
6 months
期刊介绍: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies. New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.
期刊最新文献
KAS-ATAC reveals the genome-wide single-stranded accessible chromatin landscape of the human genome Advancements in prospective single-cell lineage barcoding and their applications in research The chromatin landscape of the histone-possessing Bacteriovorax bacteria Full-resolution HLA and KIR gene annotations for human genome assemblies. Long-read subcellular fractionation and sequencing reveals the translational fate of full-length mRNA isoforms during neuronal differentiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1