离子封锁:在混合卤化物过氧化物太阳能电池的器件界面上封闭迁移通道

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-11-22 DOI:10.1021/acsenergylett.4c02546
Altaf Pasha, Shubhangi Bhardwaj, Andrew Torma, Kaveramma A. B., Nagaraj S. Naik, Isaac Metcalf, Mukaddar S. K., Hao Zhang, Mahesh Padaki, Suman Kalyan Sahoo, Aditya D. Mohite, Sushobhan Avasthi, R. Geetha Balakrishna
{"title":"离子封锁:在混合卤化物过氧化物太阳能电池的器件界面上封闭迁移通道","authors":"Altaf Pasha, Shubhangi Bhardwaj, Andrew Torma, Kaveramma A. B., Nagaraj S. Naik, Isaac Metcalf, Mukaddar S. K., Hao Zhang, Mahesh Padaki, Suman Kalyan Sahoo, Aditya D. Mohite, Sushobhan Avasthi, R. Geetha Balakrishna","doi":"10.1021/acsenergylett.4c02546","DOIUrl":null,"url":null,"abstract":"Ion migration in mixed halide perovskite (MHP) absorber layers limits the long-term stability of wide-band gap (WBG) solar cells, posing a challenge to commercialization. We address this challenge with an “ionic lockdown” strategy using a vinyl imidazolium–iodine couple, [VIm][I], at the device interface. The iodine counterion effectively occupies surface iodide vacancies, suppressing ion migration. This treatment neutralizes native defects and locks volatile iodide and organic cations, as evidenced by an increase in defect formation energies by ∼0.8 eV and activation energy for ion migration by ∼0.59 eV. We demonstrate this with MAPb(I<sub>0.5</sub>Br<sub>0.5</sub>)<sub>3</sub>, a highly unstable MHP composition. In situ GIWAXS under AM1.5G at 85 °C shows no peak splitting, confirming the photostability. Devices treated with [VIm][I] retain 90% power conversion efficiency (PCE) under continuous illumination and recover 99% PCE in the dark. These results highlight the potential of [VIm][I] for enhancing the stability of WBG cells across different compositions, paving the way for more durable perovskite-based photovoltaic technologies.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"46 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic Lockdown: Sealing Migration Channels across Device Interfaces in Mixed Halide Perovskite Solar Cells\",\"authors\":\"Altaf Pasha, Shubhangi Bhardwaj, Andrew Torma, Kaveramma A. B., Nagaraj S. Naik, Isaac Metcalf, Mukaddar S. K., Hao Zhang, Mahesh Padaki, Suman Kalyan Sahoo, Aditya D. Mohite, Sushobhan Avasthi, R. Geetha Balakrishna\",\"doi\":\"10.1021/acsenergylett.4c02546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ion migration in mixed halide perovskite (MHP) absorber layers limits the long-term stability of wide-band gap (WBG) solar cells, posing a challenge to commercialization. We address this challenge with an “ionic lockdown” strategy using a vinyl imidazolium–iodine couple, [VIm][I], at the device interface. The iodine counterion effectively occupies surface iodide vacancies, suppressing ion migration. This treatment neutralizes native defects and locks volatile iodide and organic cations, as evidenced by an increase in defect formation energies by ∼0.8 eV and activation energy for ion migration by ∼0.59 eV. We demonstrate this with MAPb(I<sub>0.5</sub>Br<sub>0.5</sub>)<sub>3</sub>, a highly unstable MHP composition. In situ GIWAXS under AM1.5G at 85 °C shows no peak splitting, confirming the photostability. Devices treated with [VIm][I] retain 90% power conversion efficiency (PCE) under continuous illumination and recover 99% PCE in the dark. These results highlight the potential of [VIm][I] for enhancing the stability of WBG cells across different compositions, paving the way for more durable perovskite-based photovoltaic technologies.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c02546\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02546","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

混合卤化物过氧化物(MHP)吸收层中的离子迁移限制了宽带隙(WBG)太阳能电池的长期稳定性,给商业化带来了挑战。我们采用了一种 "离子锁定 "策略,在器件界面上使用乙烯基咪唑-碘偶联物 [VIm][I],从而解决了这一难题。碘反离子能有效占据表面碘化物空位,抑制离子迁移。这种处理方法中和了原生缺陷,并锁定了挥发性碘化物和有机阳离子,具体表现为缺陷形成能增加了 ∼0.8 eV,离子迁移活化能增加了 ∼0.59 eV。我们用 MAPb(I0.5Br0.5)3(一种极不稳定的 MHP 成分)证明了这一点。在 85 °C 的 AM1.5G 条件下进行的原位 GIWAXS 显示没有峰分裂,从而证实了光稳定性。用[VIm][I]处理过的器件在连续光照下保持了 90% 的功率转换效率 (PCE),并在黑暗中恢复了 99% 的 PCE。这些结果凸显了[VIm][I]在提高不同成分 WBG 电池稳定性方面的潜力,为开发更耐用的基于包晶石的光伏技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ionic Lockdown: Sealing Migration Channels across Device Interfaces in Mixed Halide Perovskite Solar Cells
Ion migration in mixed halide perovskite (MHP) absorber layers limits the long-term stability of wide-band gap (WBG) solar cells, posing a challenge to commercialization. We address this challenge with an “ionic lockdown” strategy using a vinyl imidazolium–iodine couple, [VIm][I], at the device interface. The iodine counterion effectively occupies surface iodide vacancies, suppressing ion migration. This treatment neutralizes native defects and locks volatile iodide and organic cations, as evidenced by an increase in defect formation energies by ∼0.8 eV and activation energy for ion migration by ∼0.59 eV. We demonstrate this with MAPb(I0.5Br0.5)3, a highly unstable MHP composition. In situ GIWAXS under AM1.5G at 85 °C shows no peak splitting, confirming the photostability. Devices treated with [VIm][I] retain 90% power conversion efficiency (PCE) under continuous illumination and recover 99% PCE in the dark. These results highlight the potential of [VIm][I] for enhancing the stability of WBG cells across different compositions, paving the way for more durable perovskite-based photovoltaic technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Ionic Lockdown: Sealing Migration Channels across Device Interfaces in Mixed Halide Perovskite Solar Cells LiI-Coated Li-Sn Alloy Composite Anode for Lithium Metal Batteries with Solid Polymer Electrolyte Flow Field Design Matters for High Current Density Zero-Gap CO2 Electrolyzers Multifunctional Zinc Vanadium Oxide Layer on Metal Anodes Via Ultrathin Surface Coating for Enhanced Stability in Aqueous Zinc-Ion Batteries Artificial Byproduct Coatings through a Sublimated Sulfur Vapor Reaction to Enhance the Stability of Cathode/Sulfide Electrolyte Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1