{"title":"以金属铝为铝源,通过非水解溶胶-凝胶路线低温制备纳米级 Al2TiO5 粉末","authors":"Quan Zhang, Junxiong Zhang, Yu Cao, Feng Jiang, Guo Feng, Jianmin Liu, Jian Liang, Hua Li, Qing Hu, Zhifang Xu","doi":"10.1016/j.jallcom.2024.177716","DOIUrl":null,"url":null,"abstract":"Al<sub>2</sub>TiO<sub>5</sub> powder was prepared using the non-hydrolytic sol-gel route, with Al powder and titanium tetrachloride as precursor materials. The synthesized powder was characterized via XRD, DSC-TG, TEM, FTIR, FE-SEM, and laser particle size analyzer. The results indicated that Al<sub>2</sub>TiO<sub>5</sub> powder can be synthesized at 750 ℃ via gelation when the aluminum-to-alcohol molar ratio was 1:14 and titanium tetrachloride concentration was 0.9<!-- --> <!-- -->mol/L. The average particle size of Al<sub>2</sub>TiO<sub>5</sub> powder was 80<!-- --> <!-- -->nm using reflux gelation and 35<!-- --> <!-- -->nm with direct drying gelation. The Al metal utilized the hydrogen chloride produced in situ to activate itself and formed Al-O-Ti hetero-bonds through non-hydrolytic polycondensation. The Al-O-Ti hetero-bonds underwent an exothermic reaction at around 695 ℃ to form Al<sub>2</sub>TiO<sub>5</sub>. This research has broadened the range of precursor materials available for preparing Al<sub>2</sub>TiO<sub>5</sub> using the non-hydrolytic sol-gel route.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"110 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature preparation of nano-sized Al2TiO5 powder via non-hydrolytic sol-gel route with Al metal as the aluminum source\",\"authors\":\"Quan Zhang, Junxiong Zhang, Yu Cao, Feng Jiang, Guo Feng, Jianmin Liu, Jian Liang, Hua Li, Qing Hu, Zhifang Xu\",\"doi\":\"10.1016/j.jallcom.2024.177716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Al<sub>2</sub>TiO<sub>5</sub> powder was prepared using the non-hydrolytic sol-gel route, with Al powder and titanium tetrachloride as precursor materials. The synthesized powder was characterized via XRD, DSC-TG, TEM, FTIR, FE-SEM, and laser particle size analyzer. The results indicated that Al<sub>2</sub>TiO<sub>5</sub> powder can be synthesized at 750 ℃ via gelation when the aluminum-to-alcohol molar ratio was 1:14 and titanium tetrachloride concentration was 0.9<!-- --> <!-- -->mol/L. The average particle size of Al<sub>2</sub>TiO<sub>5</sub> powder was 80<!-- --> <!-- -->nm using reflux gelation and 35<!-- --> <!-- -->nm with direct drying gelation. The Al metal utilized the hydrogen chloride produced in situ to activate itself and formed Al-O-Ti hetero-bonds through non-hydrolytic polycondensation. The Al-O-Ti hetero-bonds underwent an exothermic reaction at around 695 ℃ to form Al<sub>2</sub>TiO<sub>5</sub>. This research has broadened the range of precursor materials available for preparing Al<sub>2</sub>TiO<sub>5</sub> using the non-hydrolytic sol-gel route.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.177716\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177716","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Low-temperature preparation of nano-sized Al2TiO5 powder via non-hydrolytic sol-gel route with Al metal as the aluminum source
Al2TiO5 powder was prepared using the non-hydrolytic sol-gel route, with Al powder and titanium tetrachloride as precursor materials. The synthesized powder was characterized via XRD, DSC-TG, TEM, FTIR, FE-SEM, and laser particle size analyzer. The results indicated that Al2TiO5 powder can be synthesized at 750 ℃ via gelation when the aluminum-to-alcohol molar ratio was 1:14 and titanium tetrachloride concentration was 0.9 mol/L. The average particle size of Al2TiO5 powder was 80 nm using reflux gelation and 35 nm with direct drying gelation. The Al metal utilized the hydrogen chloride produced in situ to activate itself and formed Al-O-Ti hetero-bonds through non-hydrolytic polycondensation. The Al-O-Ti hetero-bonds underwent an exothermic reaction at around 695 ℃ to form Al2TiO5. This research has broadened the range of precursor materials available for preparing Al2TiO5 using the non-hydrolytic sol-gel route.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.