在层状拓扑半金属中设计巨霍尔响应

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-22 DOI:10.1038/s41467-024-54203-3
Grigorii Skorupskii, Fabio Orlandi, Iñigo Robredo, Milena Jovanovic, Rinsuke Yamada, Fatmagül Katmer, Maia G. Vergniory, Pascal Manuel, Max Hirschberger, Leslie M. Schoop
{"title":"在层状拓扑半金属中设计巨霍尔响应","authors":"Grigorii Skorupskii, Fabio Orlandi, Iñigo Robredo, Milena Jovanovic, Rinsuke Yamada, Fatmagül Katmer, Maia G. Vergniory, Pascal Manuel, Max Hirschberger, Leslie M. Schoop","doi":"10.1038/s41467-024-54203-3","DOIUrl":null,"url":null,"abstract":"<p>Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln<sub>3</sub>Sn<sub>7</sub> (Ln = Dy, Tb)—by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice. Ln<sub>3</sub>Sn<sub>7</sub> shows high carrier mobilities upwards of 17,000 cm<sup>2</sup> <span>⋅</span> V<sup>−1</sup> <span>⋅</span> s<sup>−1</sup>, and hosts noncoplanar magnetic order. This results in a giant Hall response with an anomalous Hall angle of 0.17 and Hall conductivity of over 42,000 <i>Ω</i><sup>−1</sup> <span>⋅</span> cm<sup>−1</sup>—a value over an order of magnitude larger than the established benchmarks in Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> and Fe thin films.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing giant Hall response in layered topological semimetals\",\"authors\":\"Grigorii Skorupskii, Fabio Orlandi, Iñigo Robredo, Milena Jovanovic, Rinsuke Yamada, Fatmagül Katmer, Maia G. Vergniory, Pascal Manuel, Max Hirschberger, Leslie M. Schoop\",\"doi\":\"10.1038/s41467-024-54203-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln<sub>3</sub>Sn<sub>7</sub> (Ln = Dy, Tb)—by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice. Ln<sub>3</sub>Sn<sub>7</sub> shows high carrier mobilities upwards of 17,000 cm<sup>2</sup> <span>⋅</span> V<sup>−1</sup> <span>⋅</span> s<sup>−1</sup>, and hosts noncoplanar magnetic order. This results in a giant Hall response with an anomalous Hall angle of 0.17 and Hall conductivity of over 42,000 <i>Ω</i><sup>−1</sup> <span>⋅</span> cm<sup>−1</sup>—a value over an order of magnitude larger than the established benchmarks in Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub> and Fe thin films.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54203-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54203-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

非共面磁体是自旋电子学的绝佳候选材料。然而,这种材料很难找到,有意设计更是难上加难。在这里,我们报告了一种化学设计策略,通过瞄准具有不同单离子各向异性的解耦磁亚晶格的层状材料,并将其与方形网状拓扑半金属亚晶格相结合,我们找到了一系列非共面磁体--Ln3Sn7(Ln = Dy、Tb)。Ln3Sn7 具有高达 17,000 cm2 ⋅ V-1 ⋅ s-1 的高载流子迁移率,并具有非共面磁序。这就产生了巨大的霍尔响应,其反常霍尔角为 0.17,霍尔电导率超过 42,000 Ω-1 ⋅ cm-1--这一数值比 Co3Sn2S2 和铁薄膜的既定基准大一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing giant Hall response in layered topological semimetals

Noncoplanar magnets are excellent candidates for spintronics. However, such materials are difficult to find, and even more so to intentionally design. Here, we report a chemical design strategy that allows us to find a series of noncoplanar magnets—Ln3Sn7 (Ln = Dy, Tb)—by targeting layered materials that have decoupled magnetic sublattices with dissimilar single-ion anisotropies and combining those with a square-net topological semimetal sublattice. Ln3Sn7 shows high carrier mobilities upwards of 17,000 cm2 V−1 s−1, and hosts noncoplanar magnetic order. This results in a giant Hall response with an anomalous Hall angle of 0.17 and Hall conductivity of over 42,000 Ω−1 cm−1—a value over an order of magnitude larger than the established benchmarks in Co3Sn2S2 and Fe thin films.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: CryoET reveals actin filaments within platelet microtubules Plasma membrane remodeling determines adipocyte expansion and mechanical adaptability Measuring competing outcomes of a single-molecule reaction reveals classical Arrhenius chemical kinetics Late-stage (radio)fluorination of alkyl phosphonates via electrophilic activation A massively parallel reporter assay library to screen short synthetic promoters in mammalian cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1