{"title":"ClickGen:通过模块化反应和强化学习定向探索可合成化学空间","authors":"Mingyang Wang, Shuai Li, Jike Wang, Odin Zhang, Hongyan Du, Dejun Jiang, Zhenxing Wu, Yafeng Deng, Yu Kang, Peichen Pan, Dan Li, Xiaorui Wang, Xiaojun Yao, Tingjun Hou, Chang-Yu Hsieh","doi":"10.1038/s41467-024-54456-y","DOIUrl":null,"url":null,"abstract":"<p>Despite the significant potential of generative models, low synthesizability of many generated molecules limits their real-world applications. In response to this issue, we develop ClickGen, a deep learning model that utilizes modular reactions like click chemistry to assemble molecules and incorporates reinforcement learning along with inpainting technique to ensure that the proposed molecules display high diversity, novelty and strong binding tendency. ClickGen demonstrates superior performance over the other reaction-based generative models in terms of novelty, synthesizability, and docking conformation similarity for existing binders targeting the three proteins. We then proceeded to conduct wet-lab validation on the ClickGen’s proposed molecules for poly adenosine diphosphate-ribose polymerase 1. Due to the guaranteed high synthesizability and model-generated synthetic routes for reference, we successfully produced and tested the bioactivity of these novel compounds in just 20 days, much faster than typically expected time frame when handling sufficiently novel molecules. In bioactivity assays, two lead compounds demonstrated superior anti-proliferative efficacy against cancer cell lines, low toxicity, and nanomolar-level inhibitory activity to PARP1. We demonstrate that ClickGen and related models may represent a new paradigm in molecular generation, bringing AI-driven, automated experimentation and closed-loop molecular design closer to realization.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"66 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ClickGen: Directed exploration of synthesizable chemical space via modular reactions and reinforcement learning\",\"authors\":\"Mingyang Wang, Shuai Li, Jike Wang, Odin Zhang, Hongyan Du, Dejun Jiang, Zhenxing Wu, Yafeng Deng, Yu Kang, Peichen Pan, Dan Li, Xiaorui Wang, Xiaojun Yao, Tingjun Hou, Chang-Yu Hsieh\",\"doi\":\"10.1038/s41467-024-54456-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the significant potential of generative models, low synthesizability of many generated molecules limits their real-world applications. In response to this issue, we develop ClickGen, a deep learning model that utilizes modular reactions like click chemistry to assemble molecules and incorporates reinforcement learning along with inpainting technique to ensure that the proposed molecules display high diversity, novelty and strong binding tendency. ClickGen demonstrates superior performance over the other reaction-based generative models in terms of novelty, synthesizability, and docking conformation similarity for existing binders targeting the three proteins. We then proceeded to conduct wet-lab validation on the ClickGen’s proposed molecules for poly adenosine diphosphate-ribose polymerase 1. Due to the guaranteed high synthesizability and model-generated synthetic routes for reference, we successfully produced and tested the bioactivity of these novel compounds in just 20 days, much faster than typically expected time frame when handling sufficiently novel molecules. In bioactivity assays, two lead compounds demonstrated superior anti-proliferative efficacy against cancer cell lines, low toxicity, and nanomolar-level inhibitory activity to PARP1. We demonstrate that ClickGen and related models may represent a new paradigm in molecular generation, bringing AI-driven, automated experimentation and closed-loop molecular design closer to realization.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54456-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54456-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
ClickGen: Directed exploration of synthesizable chemical space via modular reactions and reinforcement learning
Despite the significant potential of generative models, low synthesizability of many generated molecules limits their real-world applications. In response to this issue, we develop ClickGen, a deep learning model that utilizes modular reactions like click chemistry to assemble molecules and incorporates reinforcement learning along with inpainting technique to ensure that the proposed molecules display high diversity, novelty and strong binding tendency. ClickGen demonstrates superior performance over the other reaction-based generative models in terms of novelty, synthesizability, and docking conformation similarity for existing binders targeting the three proteins. We then proceeded to conduct wet-lab validation on the ClickGen’s proposed molecules for poly adenosine diphosphate-ribose polymerase 1. Due to the guaranteed high synthesizability and model-generated synthetic routes for reference, we successfully produced and tested the bioactivity of these novel compounds in just 20 days, much faster than typically expected time frame when handling sufficiently novel molecules. In bioactivity assays, two lead compounds demonstrated superior anti-proliferative efficacy against cancer cell lines, low toxicity, and nanomolar-level inhibitory activity to PARP1. We demonstrate that ClickGen and related models may represent a new paradigm in molecular generation, bringing AI-driven, automated experimentation and closed-loop molecular design closer to realization.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.