Pengfei Dong, Liting Song, Jaroslav Bendl, Ruth Misir, Zhiping Shao, Jonathan Edelstien, David A. Davis, Vahram Haroutunian, William K. Scott, Susanne Acker, Nathan Lawless, Gabriel E. Hoffman, John F. Fullard, Panos Roussos
{"title":"染色质可及性和基因表达的多区域人脑图谱促进了启动子-同工酶解析基因精细图谱的绘制","authors":"Pengfei Dong, Liting Song, Jaroslav Bendl, Ruth Misir, Zhiping Shao, Jonathan Edelstien, David A. Davis, Vahram Haroutunian, William K. Scott, Susanne Acker, Nathan Lawless, Gabriel E. Hoffman, John F. Fullard, Panos Roussos","doi":"10.1038/s41467-024-54448-y","DOIUrl":null,"url":null,"abstract":"<p>Brain region- and cell-specific transcriptomic and epigenomic features are associated with heritability for neuropsychiatric traits, but a systematic view, considering cortical and subcortical regions, is lacking. Here, we provide an atlas of chromatin accessibility and gene expression profiles in neuronal and non-neuronal nuclei across 25 distinct human cortical and subcortical brain regions from 6 neurotypical controls. We identified extensive gene expression and chromatin accessibility differences across brain regions, including variation in alternative promoter-isoform usage and enhancer-promoter interactions. Genes with distinct promoter-isoform usage across brain regions were strongly enriched for neuropsychiatric disease risk variants. Moreover, we built enhancer-promoter interactions at promoter-isoform resolution across different brain regions and highlighted the contribution of brain region-specific and promoter-isoform-specific regulation to neuropsychiatric disorders. Including promoter-isoform resolution uncovers additional distal elements implicated in the heritability of diseases, thereby increasing the power to fine-map risk genes. Our results provide a valuable resource for studying molecular regulation across multiple regions of the human brain and underscore the importance of considering isoform information in gene regulation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"188 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-regional human brain atlas of chromatin accessibility and gene expression facilitates promoter-isoform resolution genetic fine-mapping\",\"authors\":\"Pengfei Dong, Liting Song, Jaroslav Bendl, Ruth Misir, Zhiping Shao, Jonathan Edelstien, David A. Davis, Vahram Haroutunian, William K. Scott, Susanne Acker, Nathan Lawless, Gabriel E. Hoffman, John F. Fullard, Panos Roussos\",\"doi\":\"10.1038/s41467-024-54448-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Brain region- and cell-specific transcriptomic and epigenomic features are associated with heritability for neuropsychiatric traits, but a systematic view, considering cortical and subcortical regions, is lacking. Here, we provide an atlas of chromatin accessibility and gene expression profiles in neuronal and non-neuronal nuclei across 25 distinct human cortical and subcortical brain regions from 6 neurotypical controls. We identified extensive gene expression and chromatin accessibility differences across brain regions, including variation in alternative promoter-isoform usage and enhancer-promoter interactions. Genes with distinct promoter-isoform usage across brain regions were strongly enriched for neuropsychiatric disease risk variants. Moreover, we built enhancer-promoter interactions at promoter-isoform resolution across different brain regions and highlighted the contribution of brain region-specific and promoter-isoform-specific regulation to neuropsychiatric disorders. Including promoter-isoform resolution uncovers additional distal elements implicated in the heritability of diseases, thereby increasing the power to fine-map risk genes. Our results provide a valuable resource for studying molecular regulation across multiple regions of the human brain and underscore the importance of considering isoform information in gene regulation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54448-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54448-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A multi-regional human brain atlas of chromatin accessibility and gene expression facilitates promoter-isoform resolution genetic fine-mapping
Brain region- and cell-specific transcriptomic and epigenomic features are associated with heritability for neuropsychiatric traits, but a systematic view, considering cortical and subcortical regions, is lacking. Here, we provide an atlas of chromatin accessibility and gene expression profiles in neuronal and non-neuronal nuclei across 25 distinct human cortical and subcortical brain regions from 6 neurotypical controls. We identified extensive gene expression and chromatin accessibility differences across brain regions, including variation in alternative promoter-isoform usage and enhancer-promoter interactions. Genes with distinct promoter-isoform usage across brain regions were strongly enriched for neuropsychiatric disease risk variants. Moreover, we built enhancer-promoter interactions at promoter-isoform resolution across different brain regions and highlighted the contribution of brain region-specific and promoter-isoform-specific regulation to neuropsychiatric disorders. Including promoter-isoform resolution uncovers additional distal elements implicated in the heritability of diseases, thereby increasing the power to fine-map risk genes. Our results provide a valuable resource for studying molecular regulation across multiple regions of the human brain and underscore the importance of considering isoform information in gene regulation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.