单原子 Cu-C3 位催化 Bi@C 中的界面化学,实现超稳定和超快钠离子电池

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-22 DOI:10.1002/anie.202417602
Guochang Li, Yifan Tang, Yuhui Wang, Shuangxing Cui, Hao Chen, Yaoping Hu, Huan Pang, Lei Han
{"title":"单原子 Cu-C3 位催化 Bi@C 中的界面化学,实现超稳定和超快钠离子电池","authors":"Guochang Li, Yifan Tang, Yuhui Wang, Shuangxing Cui, Hao Chen, Yaoping Hu, Huan Pang, Lei Han","doi":"10.1002/anie.202417602","DOIUrl":null,"url":null,"abstract":"Regulating interfacial chemistry at electrode–electrolyte interface by designing catalytic electrode material is crucial and challenging for optimizing battery performance. Herein, a novel single atom Cu regulated Bi@C with Cu–C3 site (Bi@SA Cu–C) have been designed via the simple pyrolysis of metal–organic framework. Experimental investigations and theoretical calculations indicate the Cu–C3 sites accelerate the dissociation of P–F and C–O bonds in NaPF6–ether–based electrolyte and catalyze the formation of inorganic–rich and powerful solid electrolyte interphase. In addition, the Cu–C3 sites with delocalized electron around Cu trigger an uneven charge distribution and induce an in–plane local electric field, which facilitates the adsorption of Na+ and reduces the Na+ migration energy barrier. Consequently, the obtained Bi@SA Cu–C achieves a state–of–the–art reversible capacity, ultrahigh rate capability, and long–term cycling durability. The as–constructed full cell delivers a high capacity of 351 mAh g−1 corresponding to an energy density of 265 Wh kg−1. This work provides a new strategy to realize high–efficient sodium ion storage for alloy–based anode through constructing single–atom modulator integrated catalysis and promotion effect into one entity.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"129 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Atomic Cu–C3 Sites Catalyzed Interfacial Chemistry in Bi@C for Ultra–Stable and Ultrafast Sodium–Ion Batteries\",\"authors\":\"Guochang Li, Yifan Tang, Yuhui Wang, Shuangxing Cui, Hao Chen, Yaoping Hu, Huan Pang, Lei Han\",\"doi\":\"10.1002/anie.202417602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulating interfacial chemistry at electrode–electrolyte interface by designing catalytic electrode material is crucial and challenging for optimizing battery performance. Herein, a novel single atom Cu regulated Bi@C with Cu–C3 site (Bi@SA Cu–C) have been designed via the simple pyrolysis of metal–organic framework. Experimental investigations and theoretical calculations indicate the Cu–C3 sites accelerate the dissociation of P–F and C–O bonds in NaPF6–ether–based electrolyte and catalyze the formation of inorganic–rich and powerful solid electrolyte interphase. In addition, the Cu–C3 sites with delocalized electron around Cu trigger an uneven charge distribution and induce an in–plane local electric field, which facilitates the adsorption of Na+ and reduces the Na+ migration energy barrier. Consequently, the obtained Bi@SA Cu–C achieves a state–of–the–art reversible capacity, ultrahigh rate capability, and long–term cycling durability. The as–constructed full cell delivers a high capacity of 351 mAh g−1 corresponding to an energy density of 265 Wh kg−1. This work provides a new strategy to realize high–efficient sodium ion storage for alloy–based anode through constructing single–atom modulator integrated catalysis and promotion effect into one entity.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202417602\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417602","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过设计催化电极材料来调节电极-电解质界面的界面化学性质,对于优化电池性能至关重要,也极具挑战性。在此,我们通过简单的金属有机框架热解,设计出一种新型单原子 Cu 调节的具有 Cu-C3 位点的 Bi@C(Bi@SA Cu-C)。实验研究和理论计算表明,Cu-C3 位点可加速 NaPF6 乙醚基电解质中 P-F 和 C-O 键的解离,并催化形成富含无机物的强固电解质相间体。此外,Cu-C3位点在Cu周围的电子离域引发了不均匀的电荷分布,并诱发了面内局部电场,从而促进了Na+的吸附,降低了Na+迁移能垒。因此,所获得的 Bi@SA Cu-C 实现了最先进的可逆容量、超高速率能力和长期循环耐久性。所构建的全电池可提供 351 mAh g-1 的高容量,能量密度为 265 Wh kg-1。这项研究通过构建集催化和促进效应于一体的单原子调制器,为实现合金基阳极的高效钠离子存储提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single Atomic Cu–C3 Sites Catalyzed Interfacial Chemistry in Bi@C for Ultra–Stable and Ultrafast Sodium–Ion Batteries
Regulating interfacial chemistry at electrode–electrolyte interface by designing catalytic electrode material is crucial and challenging for optimizing battery performance. Herein, a novel single atom Cu regulated Bi@C with Cu–C3 site (Bi@SA Cu–C) have been designed via the simple pyrolysis of metal–organic framework. Experimental investigations and theoretical calculations indicate the Cu–C3 sites accelerate the dissociation of P–F and C–O bonds in NaPF6–ether–based electrolyte and catalyze the formation of inorganic–rich and powerful solid electrolyte interphase. In addition, the Cu–C3 sites with delocalized electron around Cu trigger an uneven charge distribution and induce an in–plane local electric field, which facilitates the adsorption of Na+ and reduces the Na+ migration energy barrier. Consequently, the obtained Bi@SA Cu–C achieves a state–of–the–art reversible capacity, ultrahigh rate capability, and long–term cycling durability. The as–constructed full cell delivers a high capacity of 351 mAh g−1 corresponding to an energy density of 265 Wh kg−1. This work provides a new strategy to realize high–efficient sodium ion storage for alloy–based anode through constructing single–atom modulator integrated catalysis and promotion effect into one entity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
4D Printing of Liquid Crystal Emulsions for Smart Structures with Multiple Functionalities Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide Highly Efficient Chiral Separation Based on Alkali-proof Protein Immobilization by Covalent Organic Frameworks Single Atomic Cu–C3 Sites Catalyzed Interfacial Chemistry in Bi@C for Ultra–Stable and Ultrafast Sodium–Ion Batteries Bienzymatic Dynamic Kinetic Resolution of Secondary Alcohols by Esterification/Racemization in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1