Zintl 半导体的磁性和热电特性:Eu21Zn4As18

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-11-22 DOI:10.1021/acs.chemmater.4c02200
Md. Minhajul Islam, Maria Wróblewska, Zihao Shen, Eric S. Toberer, Valentin Taufour, Susan M. Kauzlarich
{"title":"Zintl 半导体的磁性和热电特性:Eu21Zn4As18","authors":"Md. Minhajul Islam, Maria Wróblewska, Zihao Shen, Eric S. Toberer, Valentin Taufour, Susan M. Kauzlarich","doi":"10.1021/acs.chemmater.4c02200","DOIUrl":null,"url":null,"abstract":"Compositional diversity and intriguing structural features have made Zintl phases excellent candidates as thermoelectric materials. Zintl phase with 21-4-18 composition has shown high thermoelectric performance in the mid- to high-temperature ranges. The complex crystal structure and favorable transport properties of these compounds indicate the potential for high thermoelectric efficiency. Arsenic-based Eu<sub>21</sub>Zn<sub>4</sub>As<sub>18</sub>, belonging to the Ca<sub>21</sub>Mn<sub>4</sub>Sb<sub>18</sub> structure type, exhibits a semiconductor-like p-type transport behavior and has a calculated band gap of 0.49 eV. The compound is paramagnetic at high temperatures, with an antiferromagnetic transition occurring at <i>T</i><sub>N</sub> = ∼10 K. The moment obtained from the Curie–Weiss data fit aligns with Eu<sup>2+</sup> ions. At the same time, the field-dependent measurement at 2 K indicates complex magnetic ordering with a saturation moment consistent with Eu<sup>2+</sup> ions. Pristine Eu<sub>21</sub>Zn<sub>4</sub>As<sub>18</sub> exhibits an ultralow lattice thermal conductivity of 0.40 W m<sup>–1</sup> K<sup>–1</sup> at 873 K. Electronic transport properties measurement shows evidence of bipolar conduction across much of the measured temperature range (450–780 K). However, the Seebeck coefficient remains extremely high (&gt;440 μV K<sup>–1</sup>) across this range, indicating the potential for high <i>zT</i> if an appropriate dopant is found. This work represents the first report on the temperature-dependent thermal conductivity, Seebeck coefficient, and thermoelectric efficiency of the arsenic-containing Zintl phase with 21-4-18 composition, showcasing its promise for further optimization of the thermoelectric performance.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"70 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetism and Thermoelectric Properties of the Zintl Semiconductor: Eu21Zn4As18\",\"authors\":\"Md. Minhajul Islam, Maria Wróblewska, Zihao Shen, Eric S. Toberer, Valentin Taufour, Susan M. Kauzlarich\",\"doi\":\"10.1021/acs.chemmater.4c02200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compositional diversity and intriguing structural features have made Zintl phases excellent candidates as thermoelectric materials. Zintl phase with 21-4-18 composition has shown high thermoelectric performance in the mid- to high-temperature ranges. The complex crystal structure and favorable transport properties of these compounds indicate the potential for high thermoelectric efficiency. Arsenic-based Eu<sub>21</sub>Zn<sub>4</sub>As<sub>18</sub>, belonging to the Ca<sub>21</sub>Mn<sub>4</sub>Sb<sub>18</sub> structure type, exhibits a semiconductor-like p-type transport behavior and has a calculated band gap of 0.49 eV. The compound is paramagnetic at high temperatures, with an antiferromagnetic transition occurring at <i>T</i><sub>N</sub> = ∼10 K. The moment obtained from the Curie–Weiss data fit aligns with Eu<sup>2+</sup> ions. At the same time, the field-dependent measurement at 2 K indicates complex magnetic ordering with a saturation moment consistent with Eu<sup>2+</sup> ions. Pristine Eu<sub>21</sub>Zn<sub>4</sub>As<sub>18</sub> exhibits an ultralow lattice thermal conductivity of 0.40 W m<sup>–1</sup> K<sup>–1</sup> at 873 K. Electronic transport properties measurement shows evidence of bipolar conduction across much of the measured temperature range (450–780 K). However, the Seebeck coefficient remains extremely high (&gt;440 μV K<sup>–1</sup>) across this range, indicating the potential for high <i>zT</i> if an appropriate dopant is found. This work represents the first report on the temperature-dependent thermal conductivity, Seebeck coefficient, and thermoelectric efficiency of the arsenic-containing Zintl phase with 21-4-18 composition, showcasing its promise for further optimization of the thermoelectric performance.\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02200\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02200","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

成分的多样性和奇妙的结构特征使 Zintl 相成为热电材料的绝佳候选材料。成分为 21-4-18 的 Zintl 相在中高温范围内显示出较高的热电性能。这些化合物复杂的晶体结构和良好的传输特性表明其具有提高热电效率的潜力。砷基 Eu21Zn4As18 属于 Ca21Mn4Sb18 结构类型,具有类似半导体的 p 型输运行为,计算带隙为 0.49 eV。该化合物在高温下具有顺磁性,在 TN = ∼10 K 时发生反铁磁性转变,居里-魏斯数据拟合得到的矩与 Eu2+ 离子一致。同时,在 2 K 条件下进行的磁场相关测量显示了复杂的磁有序性,其饱和磁矩与 Eu2+ 离子一致。原始 Eu21Zn4As18 在 873 K 时显示出 0.40 W m-1 K-1 的超低晶格热导率。电子传输特性测量显示,在大部分测量温度范围(450-780 K)内都存在双极传导的证据。然而,在整个温度范围内,塞贝克系数仍然非常高(440 μV K-1),这表明如果找到合适的掺杂剂,就有可能实现高 zT。这项研究首次报道了成分为 21-4-18 的含砷 Zintl 相随温度变化的热导率、塞贝克系数和热电效率,展示了其进一步优化热电性能的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetism and Thermoelectric Properties of the Zintl Semiconductor: Eu21Zn4As18
Compositional diversity and intriguing structural features have made Zintl phases excellent candidates as thermoelectric materials. Zintl phase with 21-4-18 composition has shown high thermoelectric performance in the mid- to high-temperature ranges. The complex crystal structure and favorable transport properties of these compounds indicate the potential for high thermoelectric efficiency. Arsenic-based Eu21Zn4As18, belonging to the Ca21Mn4Sb18 structure type, exhibits a semiconductor-like p-type transport behavior and has a calculated band gap of 0.49 eV. The compound is paramagnetic at high temperatures, with an antiferromagnetic transition occurring at TN = ∼10 K. The moment obtained from the Curie–Weiss data fit aligns with Eu2+ ions. At the same time, the field-dependent measurement at 2 K indicates complex magnetic ordering with a saturation moment consistent with Eu2+ ions. Pristine Eu21Zn4As18 exhibits an ultralow lattice thermal conductivity of 0.40 W m–1 K–1 at 873 K. Electronic transport properties measurement shows evidence of bipolar conduction across much of the measured temperature range (450–780 K). However, the Seebeck coefficient remains extremely high (>440 μV K–1) across this range, indicating the potential for high zT if an appropriate dopant is found. This work represents the first report on the temperature-dependent thermal conductivity, Seebeck coefficient, and thermoelectric efficiency of the arsenic-containing Zintl phase with 21-4-18 composition, showcasing its promise for further optimization of the thermoelectric performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Solid-State Hydroxide Ion Conductivity in Silver(I) Oxide, Ag2O Manipulating Backbone Planarity of Ester Functionalized Conjugated Polymer Constitutional Isomer Derivatives Blended with Molecular Acceptors for Controlling Photovoltaic Properties Celebrating the Life and Scientific Legacy of Professor Francis J. DiSalvo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1