通过可扩展的富氮 MOF 交联聚二甲基硅氧烷中空纤维混合膜实现先进的二氧化碳分离技术

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-22 DOI:10.1039/d4ta05319b
Nayan Nandha, Partha Pratim Pratim Mondal, Utpal Thummar, Ranadip Goswami, Pranay Kumar, Subhadip Neogi, Puyam Sobhindro S. Singh
{"title":"通过可扩展的富氮 MOF 交联聚二甲基硅氧烷中空纤维混合膜实现先进的二氧化碳分离技术","authors":"Nayan Nandha, Partha Pratim Pratim Mondal, Utpal Thummar, Ranadip Goswami, Pranay Kumar, Subhadip Neogi, Puyam Sobhindro S. Singh","doi":"10.1039/d4ta05319b","DOIUrl":null,"url":null,"abstract":"Addressing the urgent need for innovative solutions to combat climate change, this study introduces a groundbreaking approach to the selective separation of carbon dioxide (CO2) from the industrial flue and biogas streams. By leveraging the unique properties of Metal-Organic Frameworks (MOFs) and the versatility of polydimethylsiloxane (PDMS), we developed a hybrid membrane that stands at the forefront of CO2 separation technology. At the core of our innovation is the strategic incorporation of a moisture-stable, Zn(II) (aminoiosphtalic)(4,4',4″-(1H-imidazole-2,4,5-triyl)tripyridine) MOF into a cross-linked polymethylsiloxane layer. This composite membrane, with a thickness of up to 25 µm, is fabricated over asymmetric polysulfone hollow fibers, resulting in a robust platform that showcases exceptional selectivity and efficiency in CO2 separation. This hybrid membrane distinguishes itself from other adsorbents by demonstrating CO2 flux values ranging from 50 to 240 Gas Permeation Unit under gauge pressures of 10-100 kPa, and achieving unparalleled selectivity ratios of CO2/N2 ~ 249 and CO2/CH4 ~199 at the minimal pressure of 10 kPa. The membrane's exceptional recyclable performance, coupled with the simplicity of fabrication marks a significant advancement in the field of gas separation. The present findings pave the way for next-generation carbon capture technologies and align with the global imperative for cleaner industrial processes.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"13 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Advanced CO2 Separation via Scalable and Nitrogen-rich MOF- Cross-linked Polydimethylsiloxane Hollow Fiber Hybrid Membrane\",\"authors\":\"Nayan Nandha, Partha Pratim Pratim Mondal, Utpal Thummar, Ranadip Goswami, Pranay Kumar, Subhadip Neogi, Puyam Sobhindro S. Singh\",\"doi\":\"10.1039/d4ta05319b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addressing the urgent need for innovative solutions to combat climate change, this study introduces a groundbreaking approach to the selective separation of carbon dioxide (CO2) from the industrial flue and biogas streams. By leveraging the unique properties of Metal-Organic Frameworks (MOFs) and the versatility of polydimethylsiloxane (PDMS), we developed a hybrid membrane that stands at the forefront of CO2 separation technology. At the core of our innovation is the strategic incorporation of a moisture-stable, Zn(II) (aminoiosphtalic)(4,4',4″-(1H-imidazole-2,4,5-triyl)tripyridine) MOF into a cross-linked polymethylsiloxane layer. This composite membrane, with a thickness of up to 25 µm, is fabricated over asymmetric polysulfone hollow fibers, resulting in a robust platform that showcases exceptional selectivity and efficiency in CO2 separation. This hybrid membrane distinguishes itself from other adsorbents by demonstrating CO2 flux values ranging from 50 to 240 Gas Permeation Unit under gauge pressures of 10-100 kPa, and achieving unparalleled selectivity ratios of CO2/N2 ~ 249 and CO2/CH4 ~199 at the minimal pressure of 10 kPa. The membrane's exceptional recyclable performance, coupled with the simplicity of fabrication marks a significant advancement in the field of gas separation. The present findings pave the way for next-generation carbon capture technologies and align with the global imperative for cleaner industrial processes.\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ta05319b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta05319b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为满足应对气候变化对创新解决方案的迫切需求,本研究介绍了一种从工业烟道和沼气流中选择性分离二氧化碳(CO2)的开创性方法。通过利用金属有机框架(MOFs)的独特性能和聚二甲基硅氧烷(PDMS)的多功能性,我们开发出了一种混合膜,站在了二氧化碳分离技术的前沿。我们创新的核心是将湿度稳定的 Zn(II)(氨基磷酸盐)(4,4',4″-(1H-咪唑-2,4,5-三基)三吡啶) MOF 战略性地融入交联聚二甲基硅氧烷层。这种厚度达 25 微米的复合膜是在不对称聚砜中空纤维上制造的,从而形成了一个坚固耐用的平台,在二氧化碳分离方面具有卓越的选择性和效率。这种混合膜有别于其他吸附剂,在 10-100 kPa 的表压下,二氧化碳通量值在 50 到 240 气体渗透单位之间,在 10 kPa 的最小压力下,二氧化碳/N2 ~ 249 和二氧化碳/CH4 ~ 199 的选择性比无与伦比。这种膜具有优异的可回收性能,而且制造简单,标志着气体分离领域的重大进步。本研究成果为下一代碳捕获技术铺平了道路,并符合全球对清洁工业流程的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking Advanced CO2 Separation via Scalable and Nitrogen-rich MOF- Cross-linked Polydimethylsiloxane Hollow Fiber Hybrid Membrane
Addressing the urgent need for innovative solutions to combat climate change, this study introduces a groundbreaking approach to the selective separation of carbon dioxide (CO2) from the industrial flue and biogas streams. By leveraging the unique properties of Metal-Organic Frameworks (MOFs) and the versatility of polydimethylsiloxane (PDMS), we developed a hybrid membrane that stands at the forefront of CO2 separation technology. At the core of our innovation is the strategic incorporation of a moisture-stable, Zn(II) (aminoiosphtalic)(4,4',4″-(1H-imidazole-2,4,5-triyl)tripyridine) MOF into a cross-linked polymethylsiloxane layer. This composite membrane, with a thickness of up to 25 µm, is fabricated over asymmetric polysulfone hollow fibers, resulting in a robust platform that showcases exceptional selectivity and efficiency in CO2 separation. This hybrid membrane distinguishes itself from other adsorbents by demonstrating CO2 flux values ranging from 50 to 240 Gas Permeation Unit under gauge pressures of 10-100 kPa, and achieving unparalleled selectivity ratios of CO2/N2 ~ 249 and CO2/CH4 ~199 at the minimal pressure of 10 kPa. The membrane's exceptional recyclable performance, coupled with the simplicity of fabrication marks a significant advancement in the field of gas separation. The present findings pave the way for next-generation carbon capture technologies and align with the global imperative for cleaner industrial processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
High-Pressure Enabled High-Entropy (CrFeCoNiMn)4S5 Composite Anode for Enhanced Durability and High-Rate Sodium-Ion Batteries Enabling Rational Electrolyte Design for Lithium Batteries through Precise Descriptors: Progress and Future Perspectives Ligand Environment Engineering of Nickel Single Atomic Sites for Efficient Electrochemical Carbon Dioxide Reduction Reaction An Optical Sensor for In Situ Real-Time Detection of Intermediate Products in Nitrate Reduction Reactions Green and efficient graphitization of biomass waste empowered by molten salt electrolysis: Mechanistic exploration and energy storage applications dual-driven by experiments and simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1