{"title":"共价 DNA 编码库工作流程推动了 SARS-CoV-2 非结构蛋白抑制剂的发现","authors":"Xudong Wang, Liwei Xiong, Ying Zhu, Sixiu Liu, Wenfeng Zhao, Xinyuan Wu, Mengnisa Seydimemet, Linjie Li, Peiqi Ding, Xian Lin, Jiaxiang Liu, Xuan Wang, Zhiqiang Duan, Weiwei Lu, Yanrui Suo, Mengqing Cui, Jinfeng Yue, Rui Jin, Mingyue Zheng, Yechun Xu, Lianghe Mei, Hangchen Hu, Xiaojie Lu","doi":"10.1021/jacs.4c12992","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CL<sup>pro</sup>, Nsp5) and the papain-like protease (PL<sup>pro</sup>) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of <b>LU9</b>, a nonpeptide 3CL<sup>pro</sup> inhibitor with an IC<sub>50</sub> of 0.34 μM, and <b>LU10</b>, whose crystal structure showed a distinct binding mode within the 3CL<sup>pro</sup> active site. The X-ray cocrystal structure of SARS-CoV-2 PL<sup>pro</sup> in complex with <b>XD5</b> uncovered a previously unexplored binding site adjacent to the catalytic pocket. Additionally, a non-nucleoside covalent Nsp12 inhibitor <b>XJ5</b> achieved a potency of 0.12 μM following comprehensive structure–activity relationship analysis and optimization. Molecular dynamics revealed a potential binding mode. These compounds offer valuable chemical probes for target validation and represent promising candidates for the development of SARS-CoV-2 antiviral therapies.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"23 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors\",\"authors\":\"Xudong Wang, Liwei Xiong, Ying Zhu, Sixiu Liu, Wenfeng Zhao, Xinyuan Wu, Mengnisa Seydimemet, Linjie Li, Peiqi Ding, Xian Lin, Jiaxiang Liu, Xuan Wang, Zhiqiang Duan, Weiwei Lu, Yanrui Suo, Mengqing Cui, Jinfeng Yue, Rui Jin, Mingyue Zheng, Yechun Xu, Lianghe Mei, Hangchen Hu, Xiaojie Lu\",\"doi\":\"10.1021/jacs.4c12992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CL<sup>pro</sup>, Nsp5) and the papain-like protease (PL<sup>pro</sup>) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of <b>LU9</b>, a nonpeptide 3CL<sup>pro</sup> inhibitor with an IC<sub>50</sub> of 0.34 μM, and <b>LU10</b>, whose crystal structure showed a distinct binding mode within the 3CL<sup>pro</sup> active site. The X-ray cocrystal structure of SARS-CoV-2 PL<sup>pro</sup> in complex with <b>XD5</b> uncovered a previously unexplored binding site adjacent to the catalytic pocket. Additionally, a non-nucleoside covalent Nsp12 inhibitor <b>XJ5</b> achieved a potency of 0.12 μM following comprehensive structure–activity relationship analysis and optimization. Molecular dynamics revealed a potential binding mode. These compounds offer valuable chemical probes for target validation and represent promising candidates for the development of SARS-CoV-2 antiviral therapies.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c12992\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12992","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors
The COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CLpro, Nsp5) and the papain-like protease (PLpro) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of LU9, a nonpeptide 3CLpro inhibitor with an IC50 of 0.34 μM, and LU10, whose crystal structure showed a distinct binding mode within the 3CLpro active site. The X-ray cocrystal structure of SARS-CoV-2 PLpro in complex with XD5 uncovered a previously unexplored binding site adjacent to the catalytic pocket. Additionally, a non-nucleoside covalent Nsp12 inhibitor XJ5 achieved a potency of 0.12 μM following comprehensive structure–activity relationship analysis and optimization. Molecular dynamics revealed a potential binding mode. These compounds offer valuable chemical probes for target validation and represent promising candidates for the development of SARS-CoV-2 antiviral therapies.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.