基于具有过氧化物酶样活性的还原氧化石墨烯@二硫化钼-二茂铁纳米片的用于灵敏检测低密度脂蛋白的比色灵敏传感器。

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analytical Methods Pub Date : 2024-11-22 DOI:10.1039/d4ay01648c
Guiyin Li, Tingting Yu, Haimei Li, Bingbing Wan, Xiaohong Tan, Xueqing Zhou, Jintao Liang, Zhide Zhou
{"title":"基于具有过氧化物酶样活性的还原氧化石墨烯@二硫化钼-二茂铁纳米片的用于灵敏检测低密度脂蛋白的比色灵敏传感器。","authors":"Guiyin Li, Tingting Yu, Haimei Li, Bingbing Wan, Xiaohong Tan, Xueqing Zhou, Jintao Liang, Zhide Zhou","doi":"10.1039/d4ay01648c","DOIUrl":null,"url":null,"abstract":"<p><p>Low-density lipoprotein (LDL) is a key biomarker for cardiovascular disease (CVD) risk assessment. Monitoring LDL for the early diagnosis of CVD and its complications is an important clinical analysis tool. In this work, a novel colorimetric aptasensor for LDL detection was constructed <i>via</i> reduced graphene oxide@molybdenum disulfide-ferrocene-carboxylic nanosheets (rGO@MoS<sub>2</sub>-Fc) with excellent peroxidase-like activity. On this basis, the LDL aptamer (LDLapt) immobilized on the surface of rGO@MoS<sub>2</sub>-Fc served as a signal probe (rGO@MoS<sub>2</sub>-Fc/LDLapt), while the unmodified LDLapt served as a capture probe. When LDL was present, it was recognized by the LDLapt and rGO@MoS<sub>2</sub>-Fc/LDLapt to form an rGO@MoS<sub>2</sub>-Fc/LDLapt/LDL/LDLapt sandwich-type conjugate with excellent enzymatic catalytic properties that can catalyze the generation of hydroxyl radicals (·OH) from hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), which in turn oxidized the colorless substrate <i>o</i>-phenylenediamine (OPD) to the yellow compound 2,3-diamino phenothiazine (DAP). In addition, the catalytic mechanism of the reaction was confirmed to be induced by ·OH through free radical experiments. The aptasensor had a linear range of 15.0 to 200.0 μg mL<sup>-1</sup>, and a limit of detection (LOD) of 2.199 μg mL<sup>-1</sup>. Overall, the assay has high selectivity, sensitivity and operability, showing broad application prospects in the clinical diagnosis of CVD.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colorimetric aptasensors for sensitive low-density lipoprotein detection based on reduced oxide graphene@molybdenum disulfide-ferrocene nanosheets with peroxidase-like activity.\",\"authors\":\"Guiyin Li, Tingting Yu, Haimei Li, Bingbing Wan, Xiaohong Tan, Xueqing Zhou, Jintao Liang, Zhide Zhou\",\"doi\":\"10.1039/d4ay01648c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low-density lipoprotein (LDL) is a key biomarker for cardiovascular disease (CVD) risk assessment. Monitoring LDL for the early diagnosis of CVD and its complications is an important clinical analysis tool. In this work, a novel colorimetric aptasensor for LDL detection was constructed <i>via</i> reduced graphene oxide@molybdenum disulfide-ferrocene-carboxylic nanosheets (rGO@MoS<sub>2</sub>-Fc) with excellent peroxidase-like activity. On this basis, the LDL aptamer (LDLapt) immobilized on the surface of rGO@MoS<sub>2</sub>-Fc served as a signal probe (rGO@MoS<sub>2</sub>-Fc/LDLapt), while the unmodified LDLapt served as a capture probe. When LDL was present, it was recognized by the LDLapt and rGO@MoS<sub>2</sub>-Fc/LDLapt to form an rGO@MoS<sub>2</sub>-Fc/LDLapt/LDL/LDLapt sandwich-type conjugate with excellent enzymatic catalytic properties that can catalyze the generation of hydroxyl radicals (·OH) from hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), which in turn oxidized the colorless substrate <i>o</i>-phenylenediamine (OPD) to the yellow compound 2,3-diamino phenothiazine (DAP). In addition, the catalytic mechanism of the reaction was confirmed to be induced by ·OH through free radical experiments. The aptasensor had a linear range of 15.0 to 200.0 μg mL<sup>-1</sup>, and a limit of detection (LOD) of 2.199 μg mL<sup>-1</sup>. Overall, the assay has high selectivity, sensitivity and operability, showing broad application prospects in the clinical diagnosis of CVD.</p>\",\"PeriodicalId\":64,\"journal\":{\"name\":\"Analytical Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ay01648c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01648c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

低密度脂蛋白(LDL)是心血管疾病(CVD)风险评估的关键生物标志物。监测低密度脂蛋白以早期诊断心血管疾病及其并发症是一项重要的临床分析工具。本研究通过还原氧化石墨烯@二硫化钼-二茂铁-羧基纳米片(rGO@MoS2-Fc)构建了一种新型的检测低密度脂蛋白的比色适配传感器,该传感器具有优异的过氧化物酶样活性。在此基础上,固定在 rGO@MoS2-Fc 表面的低密度脂蛋白适配体(LDLapt)可作为信号探针(rGO@MoS2-Fc/LDLapt),而未修饰的 LDLapt 可作为捕获探针。当存在 LDL 时,LDLapt 和 rGO@MoS2-Fc/LDLapt 能识别 LDL,形成具有优良酶催化特性的 rGO@MoS2-Fc/LDLapt/LDL/LDLapt 夹心型共轭物,能催化过氧化氢(H2O2)产生羟基自由基(-OH),进而将无色底物邻苯二胺(OPD)氧化成黄色化合物 2,3-二氨基吩噻嗪(DAP)。此外,还通过自由基实验证实了该反应的催化机理是由 -OH 诱导的。该检测器的线性范围为 15.0 至 200.0 μg mL-1,检测限为 2.199 μg mL-1。总体而言,该检测方法具有高选择性、高灵敏度和可操作性,在心血管疾病的临床诊断中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Colorimetric aptasensors for sensitive low-density lipoprotein detection based on reduced oxide graphene@molybdenum disulfide-ferrocene nanosheets with peroxidase-like activity.

Low-density lipoprotein (LDL) is a key biomarker for cardiovascular disease (CVD) risk assessment. Monitoring LDL for the early diagnosis of CVD and its complications is an important clinical analysis tool. In this work, a novel colorimetric aptasensor for LDL detection was constructed via reduced graphene oxide@molybdenum disulfide-ferrocene-carboxylic nanosheets (rGO@MoS2-Fc) with excellent peroxidase-like activity. On this basis, the LDL aptamer (LDLapt) immobilized on the surface of rGO@MoS2-Fc served as a signal probe (rGO@MoS2-Fc/LDLapt), while the unmodified LDLapt served as a capture probe. When LDL was present, it was recognized by the LDLapt and rGO@MoS2-Fc/LDLapt to form an rGO@MoS2-Fc/LDLapt/LDL/LDLapt sandwich-type conjugate with excellent enzymatic catalytic properties that can catalyze the generation of hydroxyl radicals (·OH) from hydrogen peroxide (H2O2), which in turn oxidized the colorless substrate o-phenylenediamine (OPD) to the yellow compound 2,3-diamino phenothiazine (DAP). In addition, the catalytic mechanism of the reaction was confirmed to be induced by ·OH through free radical experiments. The aptasensor had a linear range of 15.0 to 200.0 μg mL-1, and a limit of detection (LOD) of 2.199 μg mL-1. Overall, the assay has high selectivity, sensitivity and operability, showing broad application prospects in the clinical diagnosis of CVD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
期刊最新文献
Ultrasensitive detection of E. coli using bioinspired based platform. A rhodamine based near-infrared fluorescent probe for selective detection of Cu2+ ions and its applications in bioimaging. A simple colorimetric detection of telomerase exploiting specific cleavage of exonuclease III coupled with telomeric DNA controlled aggregation of nanogold. External quality assurance schemes (EQUASs) and interlaboratory comparison investigations (ICIs) for the human biomonitoring of aromatic amines in urine as part of the quality assurance programme under HBM4EU. Integration of a Raman spectroscopic platform based on online sampling to monitor chemical reaction processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1