{"title":"基于具有过氧化物酶样活性的还原氧化石墨烯@二硫化钼-二茂铁纳米片的用于灵敏检测低密度脂蛋白的比色灵敏传感器。","authors":"Guiyin Li, Tingting Yu, Haimei Li, Bingbing Wan, Xiaohong Tan, Xueqing Zhou, Jintao Liang, Zhide Zhou","doi":"10.1039/d4ay01648c","DOIUrl":null,"url":null,"abstract":"<p><p>Low-density lipoprotein (LDL) is a key biomarker for cardiovascular disease (CVD) risk assessment. Monitoring LDL for the early diagnosis of CVD and its complications is an important clinical analysis tool. In this work, a novel colorimetric aptasensor for LDL detection was constructed <i>via</i> reduced graphene oxide@molybdenum disulfide-ferrocene-carboxylic nanosheets (rGO@MoS<sub>2</sub>-Fc) with excellent peroxidase-like activity. On this basis, the LDL aptamer (LDLapt) immobilized on the surface of rGO@MoS<sub>2</sub>-Fc served as a signal probe (rGO@MoS<sub>2</sub>-Fc/LDLapt), while the unmodified LDLapt served as a capture probe. When LDL was present, it was recognized by the LDLapt and rGO@MoS<sub>2</sub>-Fc/LDLapt to form an rGO@MoS<sub>2</sub>-Fc/LDLapt/LDL/LDLapt sandwich-type conjugate with excellent enzymatic catalytic properties that can catalyze the generation of hydroxyl radicals (·OH) from hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), which in turn oxidized the colorless substrate <i>o</i>-phenylenediamine (OPD) to the yellow compound 2,3-diamino phenothiazine (DAP). In addition, the catalytic mechanism of the reaction was confirmed to be induced by ·OH through free radical experiments. The aptasensor had a linear range of 15.0 to 200.0 μg mL<sup>-1</sup>, and a limit of detection (LOD) of 2.199 μg mL<sup>-1</sup>. Overall, the assay has high selectivity, sensitivity and operability, showing broad application prospects in the clinical diagnosis of CVD.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colorimetric aptasensors for sensitive low-density lipoprotein detection based on reduced oxide graphene@molybdenum disulfide-ferrocene nanosheets with peroxidase-like activity.\",\"authors\":\"Guiyin Li, Tingting Yu, Haimei Li, Bingbing Wan, Xiaohong Tan, Xueqing Zhou, Jintao Liang, Zhide Zhou\",\"doi\":\"10.1039/d4ay01648c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low-density lipoprotein (LDL) is a key biomarker for cardiovascular disease (CVD) risk assessment. Monitoring LDL for the early diagnosis of CVD and its complications is an important clinical analysis tool. In this work, a novel colorimetric aptasensor for LDL detection was constructed <i>via</i> reduced graphene oxide@molybdenum disulfide-ferrocene-carboxylic nanosheets (rGO@MoS<sub>2</sub>-Fc) with excellent peroxidase-like activity. On this basis, the LDL aptamer (LDLapt) immobilized on the surface of rGO@MoS<sub>2</sub>-Fc served as a signal probe (rGO@MoS<sub>2</sub>-Fc/LDLapt), while the unmodified LDLapt served as a capture probe. When LDL was present, it was recognized by the LDLapt and rGO@MoS<sub>2</sub>-Fc/LDLapt to form an rGO@MoS<sub>2</sub>-Fc/LDLapt/LDL/LDLapt sandwich-type conjugate with excellent enzymatic catalytic properties that can catalyze the generation of hydroxyl radicals (·OH) from hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), which in turn oxidized the colorless substrate <i>o</i>-phenylenediamine (OPD) to the yellow compound 2,3-diamino phenothiazine (DAP). In addition, the catalytic mechanism of the reaction was confirmed to be induced by ·OH through free radical experiments. The aptasensor had a linear range of 15.0 to 200.0 μg mL<sup>-1</sup>, and a limit of detection (LOD) of 2.199 μg mL<sup>-1</sup>. Overall, the assay has high selectivity, sensitivity and operability, showing broad application prospects in the clinical diagnosis of CVD.</p>\",\"PeriodicalId\":64,\"journal\":{\"name\":\"Analytical Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Methods\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ay01648c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01648c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Colorimetric aptasensors for sensitive low-density lipoprotein detection based on reduced oxide graphene@molybdenum disulfide-ferrocene nanosheets with peroxidase-like activity.
Low-density lipoprotein (LDL) is a key biomarker for cardiovascular disease (CVD) risk assessment. Monitoring LDL for the early diagnosis of CVD and its complications is an important clinical analysis tool. In this work, a novel colorimetric aptasensor for LDL detection was constructed via reduced graphene oxide@molybdenum disulfide-ferrocene-carboxylic nanosheets (rGO@MoS2-Fc) with excellent peroxidase-like activity. On this basis, the LDL aptamer (LDLapt) immobilized on the surface of rGO@MoS2-Fc served as a signal probe (rGO@MoS2-Fc/LDLapt), while the unmodified LDLapt served as a capture probe. When LDL was present, it was recognized by the LDLapt and rGO@MoS2-Fc/LDLapt to form an rGO@MoS2-Fc/LDLapt/LDL/LDLapt sandwich-type conjugate with excellent enzymatic catalytic properties that can catalyze the generation of hydroxyl radicals (·OH) from hydrogen peroxide (H2O2), which in turn oxidized the colorless substrate o-phenylenediamine (OPD) to the yellow compound 2,3-diamino phenothiazine (DAP). In addition, the catalytic mechanism of the reaction was confirmed to be induced by ·OH through free radical experiments. The aptasensor had a linear range of 15.0 to 200.0 μg mL-1, and a limit of detection (LOD) of 2.199 μg mL-1. Overall, the assay has high selectivity, sensitivity and operability, showing broad application prospects in the clinical diagnosis of CVD.