通过二脲配位屏蔽氟离子碱性,用于非水氟穿梭电池。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-22 DOI:10.1002/anie.202418371
Huijian Wang, Chengjun Lei, Tingting Liu, Ruijin Meng, Xiao Liang
{"title":"通过二脲配位屏蔽氟离子碱性,用于非水氟穿梭电池。","authors":"Huijian Wang, Chengjun Lei, Tingting Liu, Ruijin Meng, Xiao Liang","doi":"10.1002/anie.202418371","DOIUrl":null,"url":null,"abstract":"<p><p>The strong basicity of fluoride ions leads to detrimental nucleophilic attack on organic components in the electrolytes, such as β-hydrogen elimination reactions with organic cations and solvents, converting \"naked\" F- into corrosive and unstable bifluoride (HF2-) ions. These reactions significantly constrain the choice of suitable solvents and salts to develop electro(chemical) stable fluoride ion electrolytes. In this work, we replaced the triple water ligands typically present in industrial organic fluoride salts with dual 1,3-diphenylurea (DPU) coordination via hydrogen bonding interaction. This modification successfully suppressed the Lewis basicity of fluoride ions, providing long-term chemical stability (over 1000 hours) across a wide range of aprotic solvents, a broadened electrochemical stability window (-2.5 ~ 0.9 V vs. Ag+/Ag) and high ionic conductivity (1.7 mS cm-1) at room temperature. Additionally, the weaker hydrogen bonding in F--DPU coordination, compared to the conventional boron-based anion acceptor (AA) strategy that relies on intensive Lewis acid-base interactions, facilitates faster (de)fluorination kinetics at the electrode. The proposed room temperature fluoride ion batteries sustain improved electrochemical performance by pairing with the Pb-PbF2 anode and BiF3 or Ag cathode.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202418371"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shielding Fluoride Ion Basicity through Diurea Coordination for Nonaqueous Fluoride Shuttle Batteries.\",\"authors\":\"Huijian Wang, Chengjun Lei, Tingting Liu, Ruijin Meng, Xiao Liang\",\"doi\":\"10.1002/anie.202418371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The strong basicity of fluoride ions leads to detrimental nucleophilic attack on organic components in the electrolytes, such as β-hydrogen elimination reactions with organic cations and solvents, converting \\\"naked\\\" F- into corrosive and unstable bifluoride (HF2-) ions. These reactions significantly constrain the choice of suitable solvents and salts to develop electro(chemical) stable fluoride ion electrolytes. In this work, we replaced the triple water ligands typically present in industrial organic fluoride salts with dual 1,3-diphenylurea (DPU) coordination via hydrogen bonding interaction. This modification successfully suppressed the Lewis basicity of fluoride ions, providing long-term chemical stability (over 1000 hours) across a wide range of aprotic solvents, a broadened electrochemical stability window (-2.5 ~ 0.9 V vs. Ag+/Ag) and high ionic conductivity (1.7 mS cm-1) at room temperature. Additionally, the weaker hydrogen bonding in F--DPU coordination, compared to the conventional boron-based anion acceptor (AA) strategy that relies on intensive Lewis acid-base interactions, facilitates faster (de)fluorination kinetics at the electrode. The proposed room temperature fluoride ion batteries sustain improved electrochemical performance by pairing with the Pb-PbF2 anode and BiF3 or Ag cathode.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\" \",\"pages\":\"e202418371\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202418371\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418371","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氟离子的强碱性会对电解质中的有机成分产生有害的亲核攻击,例如与有机阳离子和溶剂发生β-氢消除反应,将 "裸 "氟转化为具有腐蚀性且不稳定的双氟离子(HF2-)。这些反应极大地限制了选择合适的溶剂和盐来开发电(化学)性能稳定的氟离子电解质。在这项工作中,我们通过氢键相互作用,用 1,3-二苯基脲(DPU)双配位取代了工业有机氟盐中通常存在的三水配位体。这种改性成功地抑制了氟离子的路易斯碱性,在广泛的无相溶剂中提供了长期的化学稳定性(超过 1000 小时),拓宽了电化学稳定性窗口(-2.5 ~ 0.9 V vs. Ag+/Ag),并在室温下提供了高离子电导率(1.7 mS cm-1)。此外,F--DPU 配位中的氢键较弱,而传统的硼基阴离子受体(AA)策略则依赖于密集的路易斯酸-碱相互作用,这有助于加快电极的(脱)氟动力学。通过与 Pb-PbF2 阳极和 BiF3 或银阴极配对,所提出的室温氟离子电池可维持更高的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shielding Fluoride Ion Basicity through Diurea Coordination for Nonaqueous Fluoride Shuttle Batteries.

The strong basicity of fluoride ions leads to detrimental nucleophilic attack on organic components in the electrolytes, such as β-hydrogen elimination reactions with organic cations and solvents, converting "naked" F- into corrosive and unstable bifluoride (HF2-) ions. These reactions significantly constrain the choice of suitable solvents and salts to develop electro(chemical) stable fluoride ion electrolytes. In this work, we replaced the triple water ligands typically present in industrial organic fluoride salts with dual 1,3-diphenylurea (DPU) coordination via hydrogen bonding interaction. This modification successfully suppressed the Lewis basicity of fluoride ions, providing long-term chemical stability (over 1000 hours) across a wide range of aprotic solvents, a broadened electrochemical stability window (-2.5 ~ 0.9 V vs. Ag+/Ag) and high ionic conductivity (1.7 mS cm-1) at room temperature. Additionally, the weaker hydrogen bonding in F--DPU coordination, compared to the conventional boron-based anion acceptor (AA) strategy that relies on intensive Lewis acid-base interactions, facilitates faster (de)fluorination kinetics at the electrode. The proposed room temperature fluoride ion batteries sustain improved electrochemical performance by pairing with the Pb-PbF2 anode and BiF3 or Ag cathode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Molecular‐level Modulation of N, S‐co‐doped Mesoporous Carbon Nanospheres for Selective Aqueous Catalytic Oxidation of Ethylbenzene Copper‐Catalyzed Regioselective and Enantioselective Hydropyridylation of Dienes for the Synthesis of Chiral Diaryl Compounds via Concerted Nucleophilic Aromatic Substitution Ultrafast Luminescence Detection with Selective Adsorption of Carbon Disulfide in a Gold(I) Metal−Organic Framework General and Fast Gas–Solid Synthesis of Functional MXenes and Derivatives on the Scale of Tens of Grams Mechanochromic Organic Micro‐Laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1