{"title":"神经诱导中的频谱调谐和后效应","authors":"Maëlan Q Menétrey, David Pascucci","doi":"10.1186/s12993-024-00259-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment. Our results demonstrate that entrainment not only increases synchrony between neural oscillations and the entraining stimulus but also elicits previously unreported spectral tuning effects and long-lasting after-effects. These findings offer compelling evidence for the presence of dedicated, flexible, and adaptive mechanisms for neural entrainment, which may have key roles in adjusting the sensitivity and dynamic range of brain oscillators in response to environmental temporal structures.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"29"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral tuning and after-effects in neural entrainment.\",\"authors\":\"Maëlan Q Menétrey, David Pascucci\",\"doi\":\"10.1186/s12993-024-00259-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment. Our results demonstrate that entrainment not only increases synchrony between neural oscillations and the entraining stimulus but also elicits previously unreported spectral tuning effects and long-lasting after-effects. These findings offer compelling evidence for the presence of dedicated, flexible, and adaptive mechanisms for neural entrainment, which may have key roles in adjusting the sensitivity and dynamic range of brain oscillators in response to environmental temporal structures.</p>\",\"PeriodicalId\":8729,\"journal\":{\"name\":\"Behavioral and Brain Functions\",\"volume\":\"20 1\",\"pages\":\"29\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioral and Brain Functions\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1186/s12993-024-00259-6\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Brain Functions","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s12993-024-00259-6","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Spectral tuning and after-effects in neural entrainment.
Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment. Our results demonstrate that entrainment not only increases synchrony between neural oscillations and the entraining stimulus but also elicits previously unreported spectral tuning effects and long-lasting after-effects. These findings offer compelling evidence for the presence of dedicated, flexible, and adaptive mechanisms for neural entrainment, which may have key roles in adjusting the sensitivity and dynamic range of brain oscillators in response to environmental temporal structures.
期刊介绍:
A well-established journal in the field of behavioral and cognitive neuroscience, Behavioral and Brain Functions welcomes manuscripts which provide insight into the neurobiological mechanisms underlying behavior and brain function, or dysfunction. The journal gives priority to manuscripts that combine both neurobiology and behavior in a non-clinical manner.