{"title":"PacBio 全长转录组分析揭示了 tRNA 样结构在 RNA 处理中的作用。","authors":"Yanping Hu, Shuangyong Yan, Haohao Yan, Jingping Su, Zhongqiu Cui, Junling Li, Shengjun Wang, Yue Sun, Wenjing Li, Shan Gao","doi":"10.1016/j.cellsig.2024.111515","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) are distinct from nuclear DNA (nuDNA) in a eukaryotic cell. Animal mitochondria transcribe a single primary transcript that carries all genes from a DNA strand; In contrast, plant mitochondria and chloroplasts produce multiple primary transcripts, with each transcript carrying several genes. How primary transcripts of plant mtDNA and cpDNA are processed into mature RNAs is still unknown.</p><p><strong>Results: </strong>In the present study, we employed PacBio's full-length transcriptome data to characterize the transcription of Arabidopsis thaliana mtDNA, providing a more comprehensive and precise understanding. The primary findings included 20 novel mitochondrial (mt) RNAs of A. thaliana, transcripts carrying single introns or exons, long mt and chloroplast (cp) tRNAs with intricate secondary structures, and the role of tRNA-like structures in RNA processing. The gene of No. 20 novel mt RNA and its paralog on chromosome 2 of A. thaliana were assigned locus IDs ATMG01335 and AT2G07811.</p><p><strong>Conclusions: </strong>According to our upgraded \"mitochondrial cleavage\" model, tRNA-like structures serve as \"punctuation\" marks for RNA processing, akin to the role of tRNAs. Both tRNA-like structures and tRNAs collaborate for RNA processing in plant mitochondria and chloroplasts.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":" ","pages":"111515"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PacBio full-length transcriptome analysis reveals the role of tRNA-like structures in RNA processing.\",\"authors\":\"Yanping Hu, Shuangyong Yan, Haohao Yan, Jingping Su, Zhongqiu Cui, Junling Li, Shengjun Wang, Yue Sun, Wenjing Li, Shan Gao\",\"doi\":\"10.1016/j.cellsig.2024.111515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) are distinct from nuclear DNA (nuDNA) in a eukaryotic cell. Animal mitochondria transcribe a single primary transcript that carries all genes from a DNA strand; In contrast, plant mitochondria and chloroplasts produce multiple primary transcripts, with each transcript carrying several genes. How primary transcripts of plant mtDNA and cpDNA are processed into mature RNAs is still unknown.</p><p><strong>Results: </strong>In the present study, we employed PacBio's full-length transcriptome data to characterize the transcription of Arabidopsis thaliana mtDNA, providing a more comprehensive and precise understanding. The primary findings included 20 novel mitochondrial (mt) RNAs of A. thaliana, transcripts carrying single introns or exons, long mt and chloroplast (cp) tRNAs with intricate secondary structures, and the role of tRNA-like structures in RNA processing. The gene of No. 20 novel mt RNA and its paralog on chromosome 2 of A. thaliana were assigned locus IDs ATMG01335 and AT2G07811.</p><p><strong>Conclusions: </strong>According to our upgraded \\\"mitochondrial cleavage\\\" model, tRNA-like structures serve as \\\"punctuation\\\" marks for RNA processing, akin to the role of tRNAs. Both tRNA-like structures and tRNAs collaborate for RNA processing in plant mitochondria and chloroplasts.</p>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":\" \",\"pages\":\"111515\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cellsig.2024.111515\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cellsig.2024.111515","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
PacBio full-length transcriptome analysis reveals the role of tRNA-like structures in RNA processing.
Background: Mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) are distinct from nuclear DNA (nuDNA) in a eukaryotic cell. Animal mitochondria transcribe a single primary transcript that carries all genes from a DNA strand; In contrast, plant mitochondria and chloroplasts produce multiple primary transcripts, with each transcript carrying several genes. How primary transcripts of plant mtDNA and cpDNA are processed into mature RNAs is still unknown.
Results: In the present study, we employed PacBio's full-length transcriptome data to characterize the transcription of Arabidopsis thaliana mtDNA, providing a more comprehensive and precise understanding. The primary findings included 20 novel mitochondrial (mt) RNAs of A. thaliana, transcripts carrying single introns or exons, long mt and chloroplast (cp) tRNAs with intricate secondary structures, and the role of tRNA-like structures in RNA processing. The gene of No. 20 novel mt RNA and its paralog on chromosome 2 of A. thaliana were assigned locus IDs ATMG01335 and AT2G07811.
Conclusions: According to our upgraded "mitochondrial cleavage" model, tRNA-like structures serve as "punctuation" marks for RNA processing, akin to the role of tRNAs. Both tRNA-like structures and tRNAs collaborate for RNA processing in plant mitochondria and chloroplasts.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.