{"title":"药物抑制 NLRP3 炎性体可减轻达尔盐敏感大鼠肾脏的凋亡、纤维化和损伤。","authors":"Yue Wang, Yuhang Wu, Jiayu Ren, Ying Wang, Imran Perwaiz, Hongtong Su, Jing Li, Peng Qu","doi":"10.1007/s10157-024-02567-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Salt-sensitive hypertension (SSH) is the most severe form of hypertension, and the presence of NLRP3 inflammasome plays a crucial role in its pathogenesis. Although MCC950 has shown therapeutic potential for hypertension and kidney injury, its mechanism of action remains unclear.</p><p><strong>Methods: </strong>Dahl salt-sensitive (SS) rats and their salt-tolerant aptamer control SS-13<sup>BN</sup> (BN) rats were randomly assigned to four groups: SS rats intraperitoneally administered physiological saline (SS + vehicle) or MCC950 (SS + MCC950), and BN rats intraperitoneally administered physiological saline (BN + vehicle) or MCC950 (BN + MCC950). All rats were given 2% saline for drinking and received intraperitoneal injections of physiological saline or MCC950 (5 mg/kg) every other day. Biomarkers such as serum creatinine, urinary protein, sodium retention, NLRP3 inflammasome, inflammation, apoptosis, fibrosis, sodium channels and histopathological changes in kidney injury were evaluated in blood, urine, and kidney tissues.</p><p><strong>Results: </strong>Compared with the SS + vehicle group, the SS + MCC950 group showed significantly lower blood pressure levels. Additionally, inhibition of NLRP3 inflammasome activation was observed along with reduced inflammation, apoptosis, fibrosis, and sodium retention in the kidneys.</p><p><strong>Conclusions: </strong>The findings suggest that pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure in SS rats and alleviates related kidney injury by suppressing inflammation, apoptosis, fibrosis, and sodium retention.</p>","PeriodicalId":10349,"journal":{"name":"Clinical and Experimental Nephrology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacological inhibition of the NLRP3 inflammasome attenuates kidney apoptosis, fibrosis, and injury in Dahl salt-sensitive rats.\",\"authors\":\"Yue Wang, Yuhang Wu, Jiayu Ren, Ying Wang, Imran Perwaiz, Hongtong Su, Jing Li, Peng Qu\",\"doi\":\"10.1007/s10157-024-02567-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Salt-sensitive hypertension (SSH) is the most severe form of hypertension, and the presence of NLRP3 inflammasome plays a crucial role in its pathogenesis. Although MCC950 has shown therapeutic potential for hypertension and kidney injury, its mechanism of action remains unclear.</p><p><strong>Methods: </strong>Dahl salt-sensitive (SS) rats and their salt-tolerant aptamer control SS-13<sup>BN</sup> (BN) rats were randomly assigned to four groups: SS rats intraperitoneally administered physiological saline (SS + vehicle) or MCC950 (SS + MCC950), and BN rats intraperitoneally administered physiological saline (BN + vehicle) or MCC950 (BN + MCC950). All rats were given 2% saline for drinking and received intraperitoneal injections of physiological saline or MCC950 (5 mg/kg) every other day. Biomarkers such as serum creatinine, urinary protein, sodium retention, NLRP3 inflammasome, inflammation, apoptosis, fibrosis, sodium channels and histopathological changes in kidney injury were evaluated in blood, urine, and kidney tissues.</p><p><strong>Results: </strong>Compared with the SS + vehicle group, the SS + MCC950 group showed significantly lower blood pressure levels. Additionally, inhibition of NLRP3 inflammasome activation was observed along with reduced inflammation, apoptosis, fibrosis, and sodium retention in the kidneys.</p><p><strong>Conclusions: </strong>The findings suggest that pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure in SS rats and alleviates related kidney injury by suppressing inflammation, apoptosis, fibrosis, and sodium retention.</p>\",\"PeriodicalId\":10349,\"journal\":{\"name\":\"Clinical and Experimental Nephrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10157-024-02567-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10157-024-02567-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Pharmacological inhibition of the NLRP3 inflammasome attenuates kidney apoptosis, fibrosis, and injury in Dahl salt-sensitive rats.
Background: Salt-sensitive hypertension (SSH) is the most severe form of hypertension, and the presence of NLRP3 inflammasome plays a crucial role in its pathogenesis. Although MCC950 has shown therapeutic potential for hypertension and kidney injury, its mechanism of action remains unclear.
Methods: Dahl salt-sensitive (SS) rats and their salt-tolerant aptamer control SS-13BN (BN) rats were randomly assigned to four groups: SS rats intraperitoneally administered physiological saline (SS + vehicle) or MCC950 (SS + MCC950), and BN rats intraperitoneally administered physiological saline (BN + vehicle) or MCC950 (BN + MCC950). All rats were given 2% saline for drinking and received intraperitoneal injections of physiological saline or MCC950 (5 mg/kg) every other day. Biomarkers such as serum creatinine, urinary protein, sodium retention, NLRP3 inflammasome, inflammation, apoptosis, fibrosis, sodium channels and histopathological changes in kidney injury were evaluated in blood, urine, and kidney tissues.
Results: Compared with the SS + vehicle group, the SS + MCC950 group showed significantly lower blood pressure levels. Additionally, inhibition of NLRP3 inflammasome activation was observed along with reduced inflammation, apoptosis, fibrosis, and sodium retention in the kidneys.
Conclusions: The findings suggest that pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure in SS rats and alleviates related kidney injury by suppressing inflammation, apoptosis, fibrosis, and sodium retention.
期刊介绍:
Clinical and Experimental Nephrology is a peer-reviewed monthly journal, officially published by the Japanese Society of Nephrology (JSN) to provide an international forum for the discussion of research and issues relating to the study of nephrology. Out of respect for the founders of the JSN, the title of this journal uses the term “nephrology,” a word created and brought into use with the establishment of the JSN (Japanese Journal of Nephrology, Vol. 2, No. 1, 1960). The journal publishes articles on all aspects of nephrology, including basic, experimental, and clinical research, so as to share the latest research findings and ideas not only with members of the JSN, but with all researchers who wish to contribute to a better understanding of recent advances in nephrology. The journal is unique in that it introduces to an international readership original reports from Japan and also the clinical standards discussed and agreed by JSN.