红细胞中 pI 变为酸性的 DJ-1 修饰是帕金森病早期阶段的潜在生物标志物。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Research Pub Date : 2024-11-22 DOI:10.1080/10715762.2024.2430536
Kohei Matsuda, Yuichiro Mita, Kazumasa Saigoh, Yoshiro Saito, Noriko Noguchi
{"title":"红细胞中 pI 变为酸性的 DJ-1 修饰是帕金森病早期阶段的潜在生物标志物。","authors":"Kohei Matsuda, Yuichiro Mita, Kazumasa Saigoh, Yoshiro Saito, Noriko Noguchi","doi":"10.1080/10715762.2024.2430536","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is one of the most common neurodegenerative diseases, the incidence of which increases with age. However, since there is no fundamental treatment or methods for early diagnosis, new methods of treatment and diagnosis are urgently needed. We focused on post-translational modifications of DJ-1, which is encoded by the familial PD-causative gene <i>PARK7</i> in red blood cells (RBCs). DJ-1 has three cysteines (Cys46, Cys53, and Cys106), with Cys106 being preferentially oxidized. We previously reported that sulfinated/sulfonated Cys106 DJ-1 (oxDJ-1) is increased in the RBCs of PD patients. In this study, we analyzed RBC-derived DJ-1 from PD patients and control subjects by 2-dimensional electrophoresis. We found that the ratio of the spot of DJ-1 with a more acidic isoelectric point than oxDJ-1 was increased more significantly than that of oxDJ-1 in RBCs from patients at the early stage of unmedicated PD and decreased with the progression of PD stage and treatment. Furthermore, we revealed that this acidic spot of DJ-1 increased upon exposure to H<sub>2</sub>O<sub>2</sub>. However, when either Cys53 or Cys106 of DJ-1 was replaced with serine, there was no significant increase in the acidic spot caused by H<sub>2</sub>O<sub>2</sub>. In this study, we propose a new biomarker for early diagnosis of PD using both the ratios of oxDJ-1 to total DJ-1 and the acidic spot of DJ-1 to total DJ-1.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"1-10"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modifications of DJ-1 in which pI shifts to acidic in red blood cells a potential biomarker for Parkinson's disease at early stages.\",\"authors\":\"Kohei Matsuda, Yuichiro Mita, Kazumasa Saigoh, Yoshiro Saito, Noriko Noguchi\",\"doi\":\"10.1080/10715762.2024.2430536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is one of the most common neurodegenerative diseases, the incidence of which increases with age. However, since there is no fundamental treatment or methods for early diagnosis, new methods of treatment and diagnosis are urgently needed. We focused on post-translational modifications of DJ-1, which is encoded by the familial PD-causative gene <i>PARK7</i> in red blood cells (RBCs). DJ-1 has three cysteines (Cys46, Cys53, and Cys106), with Cys106 being preferentially oxidized. We previously reported that sulfinated/sulfonated Cys106 DJ-1 (oxDJ-1) is increased in the RBCs of PD patients. In this study, we analyzed RBC-derived DJ-1 from PD patients and control subjects by 2-dimensional electrophoresis. We found that the ratio of the spot of DJ-1 with a more acidic isoelectric point than oxDJ-1 was increased more significantly than that of oxDJ-1 in RBCs from patients at the early stage of unmedicated PD and decreased with the progression of PD stage and treatment. Furthermore, we revealed that this acidic spot of DJ-1 increased upon exposure to H<sub>2</sub>O<sub>2</sub>. However, when either Cys53 or Cys106 of DJ-1 was replaced with serine, there was no significant increase in the acidic spot caused by H<sub>2</sub>O<sub>2</sub>. In this study, we propose a new biomarker for early diagnosis of PD using both the ratios of oxDJ-1 to total DJ-1 and the acidic spot of DJ-1 to total DJ-1.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2024.2430536\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2024.2430536","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

帕金森病(PD)是最常见的神经退行性疾病之一,发病率随年龄增长而增加。然而,由于没有根本的治疗方法或早期诊断方法,因此迫切需要新的治疗和诊断方法。我们重点研究了红细胞(RBC)中由家族性帕金森病致病基因 PARK7 编码的 DJ-1 的翻译后修饰。DJ-1 有三个半胱氨酸(Cys46、Cys53 和 Cys106),其中 Cys106 被优先氧化。我们以前曾报道过,在帕金森病患者的红细胞中,硫化/磺化 Cys106 的 DJ-1(oxDJ-1)会增加。在本研究中,我们通过二维电泳分析了来自帕金森病患者和对照组的 RBC源性 DJ-1。我们发现,在未用药的早期帕金森病患者的 RBC 中,等电点酸性比 oxDJ-1 更强的 DJ-1 的斑点比值比 oxDJ-1 明显增加,并随着帕金森病分期和治疗的进展而降低。此外,我们还发现,在暴露于 H2O2 时,DJ-1 的这一酸性斑点会增加。然而,当DJ-1的Cys53或Cys106被丝氨酸取代时,H2O2引起的酸性斑点并没有明显增加。在这项研究中,我们利用氧化DJ-1与总DJ-1的比率以及DJ-1酸性斑点与总DJ-1的比率提出了一种用于早期诊断PD的新生物标记物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modifications of DJ-1 in which pI shifts to acidic in red blood cells a potential biomarker for Parkinson's disease at early stages.

Parkinson's disease (PD) is one of the most common neurodegenerative diseases, the incidence of which increases with age. However, since there is no fundamental treatment or methods for early diagnosis, new methods of treatment and diagnosis are urgently needed. We focused on post-translational modifications of DJ-1, which is encoded by the familial PD-causative gene PARK7 in red blood cells (RBCs). DJ-1 has three cysteines (Cys46, Cys53, and Cys106), with Cys106 being preferentially oxidized. We previously reported that sulfinated/sulfonated Cys106 DJ-1 (oxDJ-1) is increased in the RBCs of PD patients. In this study, we analyzed RBC-derived DJ-1 from PD patients and control subjects by 2-dimensional electrophoresis. We found that the ratio of the spot of DJ-1 with a more acidic isoelectric point than oxDJ-1 was increased more significantly than that of oxDJ-1 in RBCs from patients at the early stage of unmedicated PD and decreased with the progression of PD stage and treatment. Furthermore, we revealed that this acidic spot of DJ-1 increased upon exposure to H2O2. However, when either Cys53 or Cys106 of DJ-1 was replaced with serine, there was no significant increase in the acidic spot caused by H2O2. In this study, we propose a new biomarker for early diagnosis of PD using both the ratios of oxDJ-1 to total DJ-1 and the acidic spot of DJ-1 to total DJ-1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
期刊最新文献
Modifications of DJ-1 in which pI shifts to acidic in red blood cells a potential biomarker for Parkinson's disease at early stages. Redox system and ROS-related disorders in peroxisomes. NRF2 signaling and amino acid metabolism in cancer. Accumulation of polyunsaturated lipids fuels ferroptosis to promote liver failure after extended hepatectomy in mice. Ferritin with methylglyoxal produces reactive oxygen species but remains functional.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1