{"title":"测量位置感。","authors":"Uwe Proske","doi":"10.1113/EP092190","DOIUrl":null,"url":null,"abstract":"<p><p>Position sense is arguably more important than any of the other proprioceptive senses, because it provides us with information about the position of our body and limbs in relationship to one another and to our surroundings; it has been considered to contribute to our self-awareness. There is currently no consensus over the best method of measuring position sense. We have recently measured position sense with three commonly used methods. These were two-arm matching, one-arm pointing and one-arm repositioning, all carried out by blindfolded subjects with their lightly loaded forearms moving in the sagittal plane. It is currently believed that muscle spindles are the principal position sensors. We posed the question, was there evidence for spindles participating in the generation of position sense with each method? The indicator of spindle activity we used was the presence of thixotropic errors in the position signal, in response to conditioning voluntary contractions of forearm muscles. Based on this criterion, there was evidence of spindles contributing to position sense with all three methods. It was concluded that the spindle contribution to the position signal and the extent to which this was processed centrally was different with each method. It is argued that a case could be made for the existence of more than one position sense. Differences between the methods have implications for their meaning in a clinical setting.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring position sense.\",\"authors\":\"Uwe Proske\",\"doi\":\"10.1113/EP092190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Position sense is arguably more important than any of the other proprioceptive senses, because it provides us with information about the position of our body and limbs in relationship to one another and to our surroundings; it has been considered to contribute to our self-awareness. There is currently no consensus over the best method of measuring position sense. We have recently measured position sense with three commonly used methods. These were two-arm matching, one-arm pointing and one-arm repositioning, all carried out by blindfolded subjects with their lightly loaded forearms moving in the sagittal plane. It is currently believed that muscle spindles are the principal position sensors. We posed the question, was there evidence for spindles participating in the generation of position sense with each method? The indicator of spindle activity we used was the presence of thixotropic errors in the position signal, in response to conditioning voluntary contractions of forearm muscles. Based on this criterion, there was evidence of spindles contributing to position sense with all three methods. It was concluded that the spindle contribution to the position signal and the extent to which this was processed centrally was different with each method. It is argued that a case could be made for the existence of more than one position sense. Differences between the methods have implications for their meaning in a clinical setting.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP092190\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP092190","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Position sense is arguably more important than any of the other proprioceptive senses, because it provides us with information about the position of our body and limbs in relationship to one another and to our surroundings; it has been considered to contribute to our self-awareness. There is currently no consensus over the best method of measuring position sense. We have recently measured position sense with three commonly used methods. These were two-arm matching, one-arm pointing and one-arm repositioning, all carried out by blindfolded subjects with their lightly loaded forearms moving in the sagittal plane. It is currently believed that muscle spindles are the principal position sensors. We posed the question, was there evidence for spindles participating in the generation of position sense with each method? The indicator of spindle activity we used was the presence of thixotropic errors in the position signal, in response to conditioning voluntary contractions of forearm muscles. Based on this criterion, there was evidence of spindles contributing to position sense with all three methods. It was concluded that the spindle contribution to the position signal and the extent to which this was processed centrally was different with each method. It is argued that a case could be made for the existence of more than one position sense. Differences between the methods have implications for their meaning in a clinical setting.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.