呼吸系统对最大程度呼吸暂停的反应。

IF 2.6 4区 医学 Q2 PHYSIOLOGY Experimental Physiology Pub Date : 2024-11-21 DOI:10.1113/EP091346
Colin D Hubbard, Troy J Cross, Garrett Z Merdich, Dario Vrdoljak, Nikola Foretic, Željko Dujić, Joseph W Duke
{"title":"呼吸系统对最大程度呼吸暂停的反应。","authors":"Colin D Hubbard, Troy J Cross, Garrett Z Merdich, Dario Vrdoljak, Nikola Foretic, Željko Dujić, Joseph W Duke","doi":"10.1113/EP091346","DOIUrl":null,"url":null,"abstract":"<p><p>A maximal apnoea provides significant challenges to one's physiological systems, including significantly altered arterial blood gases, and requires a highly integrative response from multiple systems, that is, changes in blood pressure, maintenance of cerebral blood flow, etc. Previous work and reviews have focused on the cardiovascular responses to a maximal apnoea, but very little work has focused upon the responses of the respiratory muscles and respiratory mechanics. This is important because of the changes to arterial blood gases leading to an increased drive to breath and the appearance of involuntary respiratory muscle contractions. This review outlines what is known about how the respiratory system responds to a maximal apnoea. We put forth the hypothesis that the respiratory muscles may become fatigued following a maximal apnoea and that the respiratory muscles of elite divers may be more fatigue-resistant, which could be an important feature of these individuals which allows them to be successful in this sport. Finally, we provide direction for future work to explore the long-term health of apnoea diving.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Respiratory system responses to a maximal apnoea.\",\"authors\":\"Colin D Hubbard, Troy J Cross, Garrett Z Merdich, Dario Vrdoljak, Nikola Foretic, Željko Dujić, Joseph W Duke\",\"doi\":\"10.1113/EP091346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A maximal apnoea provides significant challenges to one's physiological systems, including significantly altered arterial blood gases, and requires a highly integrative response from multiple systems, that is, changes in blood pressure, maintenance of cerebral blood flow, etc. Previous work and reviews have focused on the cardiovascular responses to a maximal apnoea, but very little work has focused upon the responses of the respiratory muscles and respiratory mechanics. This is important because of the changes to arterial blood gases leading to an increased drive to breath and the appearance of involuntary respiratory muscle contractions. This review outlines what is known about how the respiratory system responds to a maximal apnoea. We put forth the hypothesis that the respiratory muscles may become fatigued following a maximal apnoea and that the respiratory muscles of elite divers may be more fatigue-resistant, which could be an important feature of these individuals which allows them to be successful in this sport. Finally, we provide direction for future work to explore the long-term health of apnoea diving.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP091346\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP091346","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最大程度的呼吸暂停对人的生理系统提出了重大挑战,包括动脉血气的显著变化,需要多个系统做出高度综合的反应,即血压变化、脑血流的维持等。以往的研究和综述主要关注最大程度呼吸暂停时心血管系统的反应,但很少有研究关注呼吸肌和呼吸力学的反应。这一点非常重要,因为动脉血气的变化会导致呼吸动力增加,并出现呼吸肌不自主收缩。本综述概述了呼吸系统如何对最大程度的呼吸暂停做出反应。我们提出的假设是,最大程度呼吸暂停后,呼吸肌可能会出现疲劳,而精英潜水员的呼吸肌可能更耐受疲劳,这可能是他们能够在这项运动中取得成功的一个重要特征。最后,我们为今后探索呼吸暂停潜水的长期健康状况提供了工作方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Respiratory system responses to a maximal apnoea.

A maximal apnoea provides significant challenges to one's physiological systems, including significantly altered arterial blood gases, and requires a highly integrative response from multiple systems, that is, changes in blood pressure, maintenance of cerebral blood flow, etc. Previous work and reviews have focused on the cardiovascular responses to a maximal apnoea, but very little work has focused upon the responses of the respiratory muscles and respiratory mechanics. This is important because of the changes to arterial blood gases leading to an increased drive to breath and the appearance of involuntary respiratory muscle contractions. This review outlines what is known about how the respiratory system responds to a maximal apnoea. We put forth the hypothesis that the respiratory muscles may become fatigued following a maximal apnoea and that the respiratory muscles of elite divers may be more fatigue-resistant, which could be an important feature of these individuals which allows them to be successful in this sport. Finally, we provide direction for future work to explore the long-term health of apnoea diving.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Physiology
Experimental Physiology 医学-生理学
CiteScore
5.10
自引率
3.70%
发文量
262
审稿时长
1 months
期刊介绍: Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged. Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.
期刊最新文献
Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. Inhibition of TrkB kinase activity impairs autophagy in cervical motor neurons of young but not old mice. Measuring position sense. Born high, born fast: Does highland birth confer a pulmonary advantage for sea level endurance? Aerobic capacity and muscle proteome: Insights from a mouse model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1