Zhenpeng Chen, Beier Qi, Bin Jing, Ruijuan Dong, Rong Chen, Pujie Feng, Yilu Shou, Haiyun Li
{"title":"基于多模态和多阶段兴趣区融合网络的卷积神经网络模型,用于区分进行性轻度认知障碍和稳定型轻度认知障碍。","authors":"Zhenpeng Chen, Beier Qi, Bin Jing, Ruijuan Dong, Rong Chen, Pujie Feng, Yilu Shou, Haiyun Li","doi":"10.1177/13872877241295287","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurately differentiating stable mild cognitive impairment (sMCI) from progressive MCI (pMCI) is clinically relevant, and identification of pMCI is crucial for timely treatment before it evolves into Alzheimer's disease (AD).</p><p><strong>Objective: </strong>To construct a convolutional neural network (CNN) model to differentiate pMCI from sMCI integrating features from structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images.</p><p><strong>Methods: </strong>We proposed a multi-modal and multi-stage region of interest (ROI)-based fusion network (m2ROI-FN) CNN model to differentiate pMCI from sMCI, adopting a multi-stage fusion strategy to integrate deep semantic features and multiple morphological metrics derived from ROIs of sMRI and PET images. Specifically, ten AD-related ROIs of each modality images were selected as patches inputting into 3D hierarchical CNNs. The deep semantic features extracted by the CNNs were fused through the multi-modal integration module and further combined with the multiple morphological metrics extracted by FreeSurfer. Finally, the multilayer perceptron classifier was utilized for subject-level MCI recognition.</p><p><strong>Results: </strong>The proposed model achieved accuracy of 77.4% to differentiate pMCI from sMCI with 5-fold cross validation on the entire ADNI database. Further, ADNI-1&2 were formed into an independent sample for model training and validation, and ADNI-3&GO were formed into another independent sample for multi-center testing. The model achieved 73.2% accuracy in distinguishing pMCI and sMCI on ADNI-1&2 and 75% accuracy on ADNI-3&GO.</p><p><strong>Conclusions: </strong>An effective m2ROI-FN model to distinguish pMCI from sMCI was proposed, which was capable of capturing distinctive features in ROIs of sMRI and PET images. The experimental results demonstrated that the model has the potential to differentiate pMCI from sMCI.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877241295287"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-modal and multi-stage region of interest-based fusion network convolutional neural network model to differentiate progressive mild cognitive impairment from stable mild cognitive impairment.\",\"authors\":\"Zhenpeng Chen, Beier Qi, Bin Jing, Ruijuan Dong, Rong Chen, Pujie Feng, Yilu Shou, Haiyun Li\",\"doi\":\"10.1177/13872877241295287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accurately differentiating stable mild cognitive impairment (sMCI) from progressive MCI (pMCI) is clinically relevant, and identification of pMCI is crucial for timely treatment before it evolves into Alzheimer's disease (AD).</p><p><strong>Objective: </strong>To construct a convolutional neural network (CNN) model to differentiate pMCI from sMCI integrating features from structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images.</p><p><strong>Methods: </strong>We proposed a multi-modal and multi-stage region of interest (ROI)-based fusion network (m2ROI-FN) CNN model to differentiate pMCI from sMCI, adopting a multi-stage fusion strategy to integrate deep semantic features and multiple morphological metrics derived from ROIs of sMRI and PET images. Specifically, ten AD-related ROIs of each modality images were selected as patches inputting into 3D hierarchical CNNs. The deep semantic features extracted by the CNNs were fused through the multi-modal integration module and further combined with the multiple morphological metrics extracted by FreeSurfer. Finally, the multilayer perceptron classifier was utilized for subject-level MCI recognition.</p><p><strong>Results: </strong>The proposed model achieved accuracy of 77.4% to differentiate pMCI from sMCI with 5-fold cross validation on the entire ADNI database. Further, ADNI-1&2 were formed into an independent sample for model training and validation, and ADNI-3&GO were formed into another independent sample for multi-center testing. The model achieved 73.2% accuracy in distinguishing pMCI and sMCI on ADNI-1&2 and 75% accuracy on ADNI-3&GO.</p><p><strong>Conclusions: </strong>An effective m2ROI-FN model to distinguish pMCI from sMCI was proposed, which was capable of capturing distinctive features in ROIs of sMRI and PET images. The experimental results demonstrated that the model has the potential to differentiate pMCI from sMCI.</p>\",\"PeriodicalId\":14929,\"journal\":{\"name\":\"Journal of Alzheimer's Disease\",\"volume\":\" \",\"pages\":\"13872877241295287\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alzheimer's Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/13872877241295287\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877241295287","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A multi-modal and multi-stage region of interest-based fusion network convolutional neural network model to differentiate progressive mild cognitive impairment from stable mild cognitive impairment.
Background: Accurately differentiating stable mild cognitive impairment (sMCI) from progressive MCI (pMCI) is clinically relevant, and identification of pMCI is crucial for timely treatment before it evolves into Alzheimer's disease (AD).
Objective: To construct a convolutional neural network (CNN) model to differentiate pMCI from sMCI integrating features from structural magnetic resonance imaging (sMRI) and positron emission tomography (PET) images.
Methods: We proposed a multi-modal and multi-stage region of interest (ROI)-based fusion network (m2ROI-FN) CNN model to differentiate pMCI from sMCI, adopting a multi-stage fusion strategy to integrate deep semantic features and multiple morphological metrics derived from ROIs of sMRI and PET images. Specifically, ten AD-related ROIs of each modality images were selected as patches inputting into 3D hierarchical CNNs. The deep semantic features extracted by the CNNs were fused through the multi-modal integration module and further combined with the multiple morphological metrics extracted by FreeSurfer. Finally, the multilayer perceptron classifier was utilized for subject-level MCI recognition.
Results: The proposed model achieved accuracy of 77.4% to differentiate pMCI from sMCI with 5-fold cross validation on the entire ADNI database. Further, ADNI-1&2 were formed into an independent sample for model training and validation, and ADNI-3&GO were formed into another independent sample for multi-center testing. The model achieved 73.2% accuracy in distinguishing pMCI and sMCI on ADNI-1&2 and 75% accuracy on ADNI-3&GO.
Conclusions: An effective m2ROI-FN model to distinguish pMCI from sMCI was proposed, which was capable of capturing distinctive features in ROIs of sMRI and PET images. The experimental results demonstrated that the model has the potential to differentiate pMCI from sMCI.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.