沉默的长非编码 RNA RMST 可通过调节 microRNA-10b-5p/TRAF6 轴改善多柔比星诱导的 C57BL/6 小鼠心功能不全和炎症反应。

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of physiology and biochemistry Pub Date : 2024-11-22 DOI:10.1007/s13105-024-01056-5
Heng Cai, Yi Han
{"title":"沉默的长非编码 RNA RMST 可通过调节 microRNA-10b-5p/TRAF6 轴改善多柔比星诱导的 C57BL/6 小鼠心功能不全和炎症反应。","authors":"Heng Cai, Yi Han","doi":"10.1007/s13105-024-01056-5","DOIUrl":null,"url":null,"abstract":"<p><p>Long non-coding RNA rhabdomyosarcoma 2-associated transcript (RMST) has been found to exert effects on cardiovascular diseases. However, the research for probing its role in heart failure (HF) is limited. Our study intends to unravel the regulatory effects of RMST on HF via the microRNA (miR)-10b-5p/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis. The mouse model of HF was induced by doxorubicin. The expression levels of RMST, miR-10b-5p and TRAF6 were detected. The virus carrying RMST, miR-10b-5p or TRAF6 vectors were injected into doxorubicin-induced HF mice to examine the cardiac function, inflammatory response, pathological changes and cell apoptosis in doxorubicin-induced HF mice. The target relationships among RMST, miR-10b-5p and TRAF6 were confirmed. RMST and TRAF6 were elevated and miR-10b-5p was reduced in doxorubicin-induced HF mice. RMST or TRAF6 silencing or miR-10b-5p overexpression could improve doxorubicin-induced cardiac dysfunction, and inflammatory response, and reduce cardiomyocyte apoptosis. Down-regulation of miR-10b-5p or overexpression of TRAF6 were both able to inverse the therapeutic effect of silencing RMST on doxorubicin-induced HF mice. RMST bound to miR-10b-5p that targeted TRAF6. RMST silencing could attenuate inflammatory response and cardiomyocyte apoptosis and upregulate cardiac function in mice with doxorubicin-induced HF by modulating the miR-10b-5p/TRAF6 axis. The study provides novel therapeutic targets for HF treatment.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silenced long non-coding RNA RMST ameliorates cardiac dysfunction and inflammatory response in doxorubicin-induced heart failure in C57BL/6 mice via the modulation of the microRNA-10b-5p/TRAF6 axis.\",\"authors\":\"Heng Cai, Yi Han\",\"doi\":\"10.1007/s13105-024-01056-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long non-coding RNA rhabdomyosarcoma 2-associated transcript (RMST) has been found to exert effects on cardiovascular diseases. However, the research for probing its role in heart failure (HF) is limited. Our study intends to unravel the regulatory effects of RMST on HF via the microRNA (miR)-10b-5p/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis. The mouse model of HF was induced by doxorubicin. The expression levels of RMST, miR-10b-5p and TRAF6 were detected. The virus carrying RMST, miR-10b-5p or TRAF6 vectors were injected into doxorubicin-induced HF mice to examine the cardiac function, inflammatory response, pathological changes and cell apoptosis in doxorubicin-induced HF mice. The target relationships among RMST, miR-10b-5p and TRAF6 were confirmed. RMST and TRAF6 were elevated and miR-10b-5p was reduced in doxorubicin-induced HF mice. RMST or TRAF6 silencing or miR-10b-5p overexpression could improve doxorubicin-induced cardiac dysfunction, and inflammatory response, and reduce cardiomyocyte apoptosis. Down-regulation of miR-10b-5p or overexpression of TRAF6 were both able to inverse the therapeutic effect of silencing RMST on doxorubicin-induced HF mice. RMST bound to miR-10b-5p that targeted TRAF6. RMST silencing could attenuate inflammatory response and cardiomyocyte apoptosis and upregulate cardiac function in mice with doxorubicin-induced HF by modulating the miR-10b-5p/TRAF6 axis. The study provides novel therapeutic targets for HF treatment.</p>\",\"PeriodicalId\":16779,\"journal\":{\"name\":\"Journal of physiology and biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physiology and biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13105-024-01056-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-024-01056-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究发现,长非编码 RNA 横纹肌肉瘤 2 相关转录物(RMST)对心血管疾病有影响。然而,探究其在心力衰竭(HF)中作用的研究还很有限。我们的研究旨在揭示 RMST 通过 microRNA(miR)-10b-5p/肿瘤坏死因子受体相关因子 6(TRAF6)轴对 HF 的调控作用。多柔比星诱导了小鼠高频模型。检测了 RMST、miR-10b-5p 和 TRAF6 的表达水平。将携带RMST、miR-10b-5p或TRAF6载体的病毒注射到多柔比星诱导的HF小鼠体内,检测多柔比星诱导的HF小鼠的心脏功能、炎症反应、病理变化和细胞凋亡。研究证实了RMST、miR-10b-5p和TRAF6之间的靶标关系。在多柔比星诱导的高频小鼠中,RMST和TRAF6升高,miR-10b-5p降低。RMST或TRAF6沉默或miR-10b-5p过表达可改善多柔比星诱导的心脏功能障碍和炎症反应,并减少心肌细胞凋亡。下调 miR-10b-5p 或过表达 TRAF6 都能逆转沉默 RMST 对多柔比星诱导的高频小鼠的治疗效果。RMST与靶向TRAF6的miR-10b-5p结合。通过调节 miR-10b-5p/TRAF6 轴,沉默 RMST 可减轻多柔比星诱导的高频小鼠的炎症反应和心肌细胞凋亡,并上调其心脏功能。这项研究为治疗高频房颤提供了新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silenced long non-coding RNA RMST ameliorates cardiac dysfunction and inflammatory response in doxorubicin-induced heart failure in C57BL/6 mice via the modulation of the microRNA-10b-5p/TRAF6 axis.

Long non-coding RNA rhabdomyosarcoma 2-associated transcript (RMST) has been found to exert effects on cardiovascular diseases. However, the research for probing its role in heart failure (HF) is limited. Our study intends to unravel the regulatory effects of RMST on HF via the microRNA (miR)-10b-5p/tumor necrosis factor receptor-associated factor 6 (TRAF6) axis. The mouse model of HF was induced by doxorubicin. The expression levels of RMST, miR-10b-5p and TRAF6 were detected. The virus carrying RMST, miR-10b-5p or TRAF6 vectors were injected into doxorubicin-induced HF mice to examine the cardiac function, inflammatory response, pathological changes and cell apoptosis in doxorubicin-induced HF mice. The target relationships among RMST, miR-10b-5p and TRAF6 were confirmed. RMST and TRAF6 were elevated and miR-10b-5p was reduced in doxorubicin-induced HF mice. RMST or TRAF6 silencing or miR-10b-5p overexpression could improve doxorubicin-induced cardiac dysfunction, and inflammatory response, and reduce cardiomyocyte apoptosis. Down-regulation of miR-10b-5p or overexpression of TRAF6 were both able to inverse the therapeutic effect of silencing RMST on doxorubicin-induced HF mice. RMST bound to miR-10b-5p that targeted TRAF6. RMST silencing could attenuate inflammatory response and cardiomyocyte apoptosis and upregulate cardiac function in mice with doxorubicin-induced HF by modulating the miR-10b-5p/TRAF6 axis. The study provides novel therapeutic targets for HF treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of physiology and biochemistry
Journal of physiology and biochemistry 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.
期刊最新文献
Modification of adipogenesis and oxidative stress by quercetin: positive or negative impact on adipose tissue metabolism of obese diabetic Zucker rats? Silenced long non-coding RNA RMST ameliorates cardiac dysfunction and inflammatory response in doxorubicin-induced heart failure in C57BL/6 mice via the modulation of the microRNA-10b-5p/TRAF6 axis. The importance of growth differentiation factor 15 and interleukin 6 serum levels in inflammatory bowel diseases. Prognostic model development using novel genetic signature associated with adenosine metabolism and immune status for patients with hepatocellular carcinoma. Histone demethylase JMJD1C advances macrophage foam cell formation and atherosclerosis progression by promoting the transcription of PCSK9.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1