Chenyang Han, Xiaoying Qian, Hongyan Pei, Caiqun Zhang, Jin Wang, Xiaohong Zhou, Wenyan Li, Yi Yang, Shasha Wu
{"title":"双阴性 T 细胞通过调节 Treg/Th17 促进肝纤维化进展","authors":"Chenyang Han, Xiaoying Qian, Hongyan Pei, Caiqun Zhang, Jin Wang, Xiaohong Zhou, Wenyan Li, Yi Yang, Shasha Wu","doi":"10.1002/jbt.70028","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the mechanism whereby double-negative T cells (DNTs) regulate Treg/Th17 balance to promote the progression of liver fibrosis. Liver fibrosis was induced with carbon tetrachloride (CCl4) in mice. Mouse DNTs were isolated, amplified and injected. The proportions of iTreg (CDF4+CD25+Foxp3+) and Th17 (CD4+IL-17A+) in peripheral mononuclear cells, spleen and liver were analyzed by flow cytometry, and the cytokine levels were determined through enzyme-linked immunosorbent assay (ELISA). DNTs could promote the Th17 differentiation and inhibit the iTreg differentiation. The role of DNTs in promoting liver fibrosis progression and tissue inflammation was exerted through activation of IκBa. The use of IL-17A monoclonal antibody enabled suppression of the DNTs effects, reduction of the Th17 proportion and alleviation of liver fibrosis. Hal could suppress the Th17 differentiation and the effect of DNTs. DNTs can promote the Th17 differentiation through IL-17A and inhibit iTreg differentiation, thereby facilitating the liver fibrosis progression and microenvironmental inflammation. DNTs are a kind of important immunocytes that promote the liver fibrosis progression.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"38 12","pages":"e70028"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-Negative T Cells Promote Liver Fibrosis Progression by Regulating Treg/Th17.\",\"authors\":\"Chenyang Han, Xiaoying Qian, Hongyan Pei, Caiqun Zhang, Jin Wang, Xiaohong Zhou, Wenyan Li, Yi Yang, Shasha Wu\",\"doi\":\"10.1002/jbt.70028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the mechanism whereby double-negative T cells (DNTs) regulate Treg/Th17 balance to promote the progression of liver fibrosis. Liver fibrosis was induced with carbon tetrachloride (CCl4) in mice. Mouse DNTs were isolated, amplified and injected. The proportions of iTreg (CDF4+CD25+Foxp3+) and Th17 (CD4+IL-17A+) in peripheral mononuclear cells, spleen and liver were analyzed by flow cytometry, and the cytokine levels were determined through enzyme-linked immunosorbent assay (ELISA). DNTs could promote the Th17 differentiation and inhibit the iTreg differentiation. The role of DNTs in promoting liver fibrosis progression and tissue inflammation was exerted through activation of IκBa. The use of IL-17A monoclonal antibody enabled suppression of the DNTs effects, reduction of the Th17 proportion and alleviation of liver fibrosis. Hal could suppress the Th17 differentiation and the effect of DNTs. DNTs can promote the Th17 differentiation through IL-17A and inhibit iTreg differentiation, thereby facilitating the liver fibrosis progression and microenvironmental inflammation. DNTs are a kind of important immunocytes that promote the liver fibrosis progression.</p>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"38 12\",\"pages\":\"e70028\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jbt.70028\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jbt.70028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Double-Negative T Cells Promote Liver Fibrosis Progression by Regulating Treg/Th17.
We investigated the mechanism whereby double-negative T cells (DNTs) regulate Treg/Th17 balance to promote the progression of liver fibrosis. Liver fibrosis was induced with carbon tetrachloride (CCl4) in mice. Mouse DNTs were isolated, amplified and injected. The proportions of iTreg (CDF4+CD25+Foxp3+) and Th17 (CD4+IL-17A+) in peripheral mononuclear cells, spleen and liver were analyzed by flow cytometry, and the cytokine levels were determined through enzyme-linked immunosorbent assay (ELISA). DNTs could promote the Th17 differentiation and inhibit the iTreg differentiation. The role of DNTs in promoting liver fibrosis progression and tissue inflammation was exerted through activation of IκBa. The use of IL-17A monoclonal antibody enabled suppression of the DNTs effects, reduction of the Th17 proportion and alleviation of liver fibrosis. Hal could suppress the Th17 differentiation and the effect of DNTs. DNTs can promote the Th17 differentiation through IL-17A and inhibit iTreg differentiation, thereby facilitating the liver fibrosis progression and microenvironmental inflammation. DNTs are a kind of important immunocytes that promote the liver fibrosis progression.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.