{"title":"Mincle通过Syk/NF-κB途径维持巨噬细胞的M1极化并促进肾脏衰老","authors":"Lingshuang Sun, Hua Liu, Kehui Shi, Meng Wei, Hongli Jiang","doi":"10.1002/jbt.70062","DOIUrl":null,"url":null,"abstract":"<p><p>Kidney is a classic organ undergoing senescence, and chronic inflammation has an important effect in cellular senescence. Mincle has been shown to be vital for maintaining the M1 phenotype of macrophages, but its role in regulating renal aging has yet to be explored. Young (2 months of age) and old (24 months of age) mice were used to analyze the changes of kidney damage during natural aging. Mice were subcutaneously injected with D-galactose (D-gal) to establish a renal aging model, and miR-6948-3p mimic and Mincle siRNA were administered via the tail vein every 3 days. Aged kidney and experimental aging kidney were characterized by decreased renal function and structural damage, and upregulated expression of senescence-related proteins and SPAP components. The ratio of M1 macrophages was increased in the aged kidney, and Mincle accumulated in the aged kidney macrophages. Administration of miR-6948-3p mimic or Mincle siRNA alleviated D-gal-induced renal senescence. LPS was used to induce M1 polarization of bone marrow-derived macrophages, and a coculture system of M1 macrophages and mouse renal tubular epithelial cells (TCMK-1) was established. Mincle was upregulated in LPS-induced M1 macrophages in vitro, and silencing Mincle in M1 macrophages attenuated M1 macrophage-induced TCMK-1 cell senescence. Mechanistically, Mincle was regulated by miR-6948-3p and maintained the M1 phenotype of macrophages through the Syk/NF-κB pathway. In conclusion, Mincle, posttranscriptionally suppressed by miR-6948-3p, modulated renal senescence by maintaining the phenotype of M1 macrophages through the Syk/NF-κB pathway.</p>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"38 12","pages":"e70062"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mincle Maintains M1 Polarization of Macrophages and Contributes to Renal Aging Through the Syk/NF-κB Pathway.\",\"authors\":\"Lingshuang Sun, Hua Liu, Kehui Shi, Meng Wei, Hongli Jiang\",\"doi\":\"10.1002/jbt.70062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kidney is a classic organ undergoing senescence, and chronic inflammation has an important effect in cellular senescence. Mincle has been shown to be vital for maintaining the M1 phenotype of macrophages, but its role in regulating renal aging has yet to be explored. Young (2 months of age) and old (24 months of age) mice were used to analyze the changes of kidney damage during natural aging. Mice were subcutaneously injected with D-galactose (D-gal) to establish a renal aging model, and miR-6948-3p mimic and Mincle siRNA were administered via the tail vein every 3 days. Aged kidney and experimental aging kidney were characterized by decreased renal function and structural damage, and upregulated expression of senescence-related proteins and SPAP components. The ratio of M1 macrophages was increased in the aged kidney, and Mincle accumulated in the aged kidney macrophages. Administration of miR-6948-3p mimic or Mincle siRNA alleviated D-gal-induced renal senescence. LPS was used to induce M1 polarization of bone marrow-derived macrophages, and a coculture system of M1 macrophages and mouse renal tubular epithelial cells (TCMK-1) was established. Mincle was upregulated in LPS-induced M1 macrophages in vitro, and silencing Mincle in M1 macrophages attenuated M1 macrophage-induced TCMK-1 cell senescence. Mechanistically, Mincle was regulated by miR-6948-3p and maintained the M1 phenotype of macrophages through the Syk/NF-κB pathway. In conclusion, Mincle, posttranscriptionally suppressed by miR-6948-3p, modulated renal senescence by maintaining the phenotype of M1 macrophages through the Syk/NF-κB pathway.</p>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"38 12\",\"pages\":\"e70062\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jbt.70062\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jbt.70062","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mincle Maintains M1 Polarization of Macrophages and Contributes to Renal Aging Through the Syk/NF-κB Pathway.
Kidney is a classic organ undergoing senescence, and chronic inflammation has an important effect in cellular senescence. Mincle has been shown to be vital for maintaining the M1 phenotype of macrophages, but its role in regulating renal aging has yet to be explored. Young (2 months of age) and old (24 months of age) mice were used to analyze the changes of kidney damage during natural aging. Mice were subcutaneously injected with D-galactose (D-gal) to establish a renal aging model, and miR-6948-3p mimic and Mincle siRNA were administered via the tail vein every 3 days. Aged kidney and experimental aging kidney were characterized by decreased renal function and structural damage, and upregulated expression of senescence-related proteins and SPAP components. The ratio of M1 macrophages was increased in the aged kidney, and Mincle accumulated in the aged kidney macrophages. Administration of miR-6948-3p mimic or Mincle siRNA alleviated D-gal-induced renal senescence. LPS was used to induce M1 polarization of bone marrow-derived macrophages, and a coculture system of M1 macrophages and mouse renal tubular epithelial cells (TCMK-1) was established. Mincle was upregulated in LPS-induced M1 macrophages in vitro, and silencing Mincle in M1 macrophages attenuated M1 macrophage-induced TCMK-1 cell senescence. Mechanistically, Mincle was regulated by miR-6948-3p and maintained the M1 phenotype of macrophages through the Syk/NF-κB pathway. In conclusion, Mincle, posttranscriptionally suppressed by miR-6948-3p, modulated renal senescence by maintaining the phenotype of M1 macrophages through the Syk/NF-κB pathway.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.