从表面图像中提取神经策略2004-2024.

IF 3.3 3区 医学 Q1 PHYSIOLOGY Journal of applied physiology Pub Date : 2024-11-22 DOI:10.1152/japplphysiol.00453.2024
Dario Farina, Roberto Merletti, Roger M Enoka
{"title":"从表面图像中提取神经策略2004-2024.","authors":"Dario Farina, Roberto Merletti, Roger M Enoka","doi":"10.1152/japplphysiol.00453.2024","DOIUrl":null,"url":null,"abstract":"<p><p>This review follows two previous papers (Farina <i>et al</i>., 2004, 2014) in which we reflected on the use of surface EMG in the study of the neural control of movement. This series of papers began with an analysis of the indirect approaches of EMG processing to infer the neural control strategies and then closely followed the progress in EMG technology. In this third paper, we focus on three main areas: surface EMG modelling; surface EMG processing, with an emphasis on decomposition; and interfacing applications of surface EMG recordings. We highlight the latest advances in EMG models that allow fast generation of simulated signals from realistic volume conductors, with applications ranging from validation of algorithms to identification of non-measurable parameters by inverse modelling. Surface EMG decomposition is currently an established state-of-the-art tool for physiological investigations of motor units. It is now possible to identify large samples of motor units, to track motor units over multiple sessions, to partially compensate for the non-stationarities in dynamic contractions, and to decompose signals in real-time. The latter achievement has facilitated advances in myocontrol, by using the online decoded neural drive as a control signal, such as in the interfacing of prostheses. Looking back over the 20 years since our first review, we conclude that the recording and analysis of surface EMG signals has seen breakthrough advances in this period. Although challenges in its application and interpretation remain, surface EMG is now a solid and unique tool for the study of the neural control of movement.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Extraction Of Neural Strategies From The Surface Emg: 2004-2024.\",\"authors\":\"Dario Farina, Roberto Merletti, Roger M Enoka\",\"doi\":\"10.1152/japplphysiol.00453.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review follows two previous papers (Farina <i>et al</i>., 2004, 2014) in which we reflected on the use of surface EMG in the study of the neural control of movement. This series of papers began with an analysis of the indirect approaches of EMG processing to infer the neural control strategies and then closely followed the progress in EMG technology. In this third paper, we focus on three main areas: surface EMG modelling; surface EMG processing, with an emphasis on decomposition; and interfacing applications of surface EMG recordings. We highlight the latest advances in EMG models that allow fast generation of simulated signals from realistic volume conductors, with applications ranging from validation of algorithms to identification of non-measurable parameters by inverse modelling. Surface EMG decomposition is currently an established state-of-the-art tool for physiological investigations of motor units. It is now possible to identify large samples of motor units, to track motor units over multiple sessions, to partially compensate for the non-stationarities in dynamic contractions, and to decompose signals in real-time. The latter achievement has facilitated advances in myocontrol, by using the online decoded neural drive as a control signal, such as in the interfacing of prostheses. Looking back over the 20 years since our first review, we conclude that the recording and analysis of surface EMG signals has seen breakthrough advances in this period. Although challenges in its application and interpretation remain, surface EMG is now a solid and unique tool for the study of the neural control of movement.</p>\",\"PeriodicalId\":15160,\"journal\":{\"name\":\"Journal of applied physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/japplphysiol.00453.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00453.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本综述是继之前两篇论文(Farina 等人,2004 年,2014 年)之后,我们对表面肌电图在运动神经控制研究中的应用进行的反思。这一系列论文首先分析了肌电图处理的间接方法以推断神经控制策略,然后密切关注了肌电图技术的进展。在第三篇论文中,我们将重点关注三个主要领域:表面肌电图建模;表面肌电图处理,重点是分解;以及表面肌电图记录的接口应用。我们重点介绍了 EMG 模型的最新进展,这些模型可快速生成来自真实体积导体的模拟信号,其应用范围从算法验证到通过逆建模识别不可测量参数。表面肌电图分解是目前最先进的运动单元生理研究工具。现在,它可以识别大量运动单元样本,在多个疗程中跟踪运动单元,部分补偿动态收缩中的非稳态性,并实时分解信号。后一项成就促进了肌控制领域的进步,通过使用在线解码的神经驱动作为控制信号,例如用于假肢的连接。回顾自首次回顾以来的 20 年,我们得出结论:在此期间,表面肌电信号的记录和分析取得了突破性进展。尽管在应用和解释方面仍存在挑战,但表面肌电图现已成为研究运动神经控制的可靠而独特的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Extraction Of Neural Strategies From The Surface Emg: 2004-2024.

This review follows two previous papers (Farina et al., 2004, 2014) in which we reflected on the use of surface EMG in the study of the neural control of movement. This series of papers began with an analysis of the indirect approaches of EMG processing to infer the neural control strategies and then closely followed the progress in EMG technology. In this third paper, we focus on three main areas: surface EMG modelling; surface EMG processing, with an emphasis on decomposition; and interfacing applications of surface EMG recordings. We highlight the latest advances in EMG models that allow fast generation of simulated signals from realistic volume conductors, with applications ranging from validation of algorithms to identification of non-measurable parameters by inverse modelling. Surface EMG decomposition is currently an established state-of-the-art tool for physiological investigations of motor units. It is now possible to identify large samples of motor units, to track motor units over multiple sessions, to partially compensate for the non-stationarities in dynamic contractions, and to decompose signals in real-time. The latter achievement has facilitated advances in myocontrol, by using the online decoded neural drive as a control signal, such as in the interfacing of prostheses. Looking back over the 20 years since our first review, we conclude that the recording and analysis of surface EMG signals has seen breakthrough advances in this period. Although challenges in its application and interpretation remain, surface EMG is now a solid and unique tool for the study of the neural control of movement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
9.10%
发文量
296
审稿时长
2-4 weeks
期刊介绍: The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.
期刊最新文献
The Extraction Of Neural Strategies From The Surface Emg: 2004-2024. Does Running Speed affect the Performance Improvements Experienced by Elite Distance Runners Wearing Advanced Footwear Technology Spikes? Peripheral antitussives affect temporal features of tracheobronchial coughing in cats. Quantifying the Time-course of Changes in Maximal Skin Wettedness with 7 days of Heat Acclimation. Respiratory muscle strength pre- and post-maximal apneas in a world champion breath-hold diver.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1