{"title":"依达拉奉通过抑制自噬介导的铁蛋白沉积减轻草酸钙诱导的肾小管上皮细胞损伤","authors":"Wei Chen, Zipei Cao, Shunping Wang","doi":"10.1007/s00210-024-03630-6","DOIUrl":null,"url":null,"abstract":"<p><p>Edaravone (EDA) has been found to exert protective effects on kidney injury. Nevertheless, the functions of EDA in kidney stones as well as the potential mechanism are vague. Calcium oxalate (CaOx) was used to induce kidney stones cell model with human renal tubular epithelial cell line HK-2. CCK-8 assay was employed to detect cell viability injury. Oxidative stress was measured by DCFH-DA staining and detection of MDA, SOD, and GSH. Staining of FerroOrange and western blot were applied for ferroptosis. In addition, autophagy was elucidated by western blot and immunofluorescence staining. The data showed that CaOx treatment aggravated HK-2 cell viability injury, increased the levels of ROS, MDA, and Fe<sup>2+</sup> in HK-2 cells, and reduced the contents of SOD and GSH. Additionally, CaOx enhanced the expression of KIM1, TFR1, LC3II/LC31, and BECLIN1 in HK-2 cells, while resulting in a decrease in the expression of GPX4, SLC7A11, and P62. Pretreatment of EDA mitigated CaOx-induced oxidative stress and ferroptosis, as well as autophagy in renal tubular epithelial cells. However, autophagy inducer rapamycin (Rap) reversed the protective role of EDA on renal tubular epithelial cell injury, oxidative stress, and ferroptosis. In conclusion, EDA contributes to suppressing oxidative stress and ferroptosis in CaOx-induced HT22 cells by restraining autophagy, which may be a potential candidate for the treatment of kidney stones caused by renal tubular epithelial cell damage.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edaravone mitigates calcium oxalate-induced renal tubular epithelial cell injury by inhibiting autophagy-mediated ferroptosis.\",\"authors\":\"Wei Chen, Zipei Cao, Shunping Wang\",\"doi\":\"10.1007/s00210-024-03630-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Edaravone (EDA) has been found to exert protective effects on kidney injury. Nevertheless, the functions of EDA in kidney stones as well as the potential mechanism are vague. Calcium oxalate (CaOx) was used to induce kidney stones cell model with human renal tubular epithelial cell line HK-2. CCK-8 assay was employed to detect cell viability injury. Oxidative stress was measured by DCFH-DA staining and detection of MDA, SOD, and GSH. Staining of FerroOrange and western blot were applied for ferroptosis. In addition, autophagy was elucidated by western blot and immunofluorescence staining. The data showed that CaOx treatment aggravated HK-2 cell viability injury, increased the levels of ROS, MDA, and Fe<sup>2+</sup> in HK-2 cells, and reduced the contents of SOD and GSH. Additionally, CaOx enhanced the expression of KIM1, TFR1, LC3II/LC31, and BECLIN1 in HK-2 cells, while resulting in a decrease in the expression of GPX4, SLC7A11, and P62. Pretreatment of EDA mitigated CaOx-induced oxidative stress and ferroptosis, as well as autophagy in renal tubular epithelial cells. However, autophagy inducer rapamycin (Rap) reversed the protective role of EDA on renal tubular epithelial cell injury, oxidative stress, and ferroptosis. In conclusion, EDA contributes to suppressing oxidative stress and ferroptosis in CaOx-induced HT22 cells by restraining autophagy, which may be a potential candidate for the treatment of kidney stones caused by renal tubular epithelial cell damage.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-024-03630-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03630-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Edaravone (EDA) has been found to exert protective effects on kidney injury. Nevertheless, the functions of EDA in kidney stones as well as the potential mechanism are vague. Calcium oxalate (CaOx) was used to induce kidney stones cell model with human renal tubular epithelial cell line HK-2. CCK-8 assay was employed to detect cell viability injury. Oxidative stress was measured by DCFH-DA staining and detection of MDA, SOD, and GSH. Staining of FerroOrange and western blot were applied for ferroptosis. In addition, autophagy was elucidated by western blot and immunofluorescence staining. The data showed that CaOx treatment aggravated HK-2 cell viability injury, increased the levels of ROS, MDA, and Fe2+ in HK-2 cells, and reduced the contents of SOD and GSH. Additionally, CaOx enhanced the expression of KIM1, TFR1, LC3II/LC31, and BECLIN1 in HK-2 cells, while resulting in a decrease in the expression of GPX4, SLC7A11, and P62. Pretreatment of EDA mitigated CaOx-induced oxidative stress and ferroptosis, as well as autophagy in renal tubular epithelial cells. However, autophagy inducer rapamycin (Rap) reversed the protective role of EDA on renal tubular epithelial cell injury, oxidative stress, and ferroptosis. In conclusion, EDA contributes to suppressing oxidative stress and ferroptosis in CaOx-induced HT22 cells by restraining autophagy, which may be a potential candidate for the treatment of kidney stones caused by renal tubular epithelial cell damage.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.